#ifndef _LINUX_F2FS_FS_H
#define _LINUX_F2FS_FS_H
#include <linux/pagemap.h>
#include <linux/types.h>
#define F2FS_SUPER_OFFSET 1024
#define F2FS_MIN_LOG_SECTOR_SIZE 9
#define F2FS_MAX_LOG_SECTOR_SIZE 12
#define F2FS_LOG_SECTORS_PER_BLOCK 3
#define F2FS_BLKSIZE 4096
#define F2FS_MAX_EXTENSION 64
#define F2FS_BLK_ALIGN(x) (((x) + F2FS_BLKSIZE - 1) / F2FS_BLKSIZE)
#define NULL_ADDR ((block_t)0)
#define NEW_ADDR ((block_t)-1)
#define F2FS_RESERVED_NODE_NUM 3
#define F2FS_ROOT_INO(sbi) (sbi->root_ino_num)
#define F2FS_NODE_INO(sbi) (sbi->node_ino_num)
#define F2FS_META_INO(sbi) (sbi->meta_ino_num)
#define GFP_F2FS_ZERO (GFP_NOFS | __GFP_ZERO)
#define MAX_ACTIVE_LOGS 16
#define MAX_ACTIVE_NODE_LOGS 8
#define MAX_ACTIVE_DATA_LOGS 8
struct f2fs_super_block {
__le32 magic;
__le16 major_ver;
__le16 minor_ver;
__le32 log_sectorsize;
__le32 log_sectors_per_block;
__le32 log_blocksize;
__le32 log_blocks_per_seg;
__le32 segs_per_sec;
__le32 secs_per_zone;
__le32 checksum_offset;
__le64 block_count;
__le32 section_count;
__le32 segment_count;
__le32 segment_count_ckpt;
__le32 segment_count_sit;
__le32 segment_count_nat;
__le32 segment_count_ssa;
__le32 segment_count_main;
__le32 segment0_blkaddr;
__le32 cp_blkaddr;
__le32 sit_blkaddr;
__le32 nat_blkaddr;
__le32 ssa_blkaddr;
__le32 main_blkaddr;
__le32 root_ino;
__le32 node_ino;
__le32 meta_ino;
__u8 uuid[16];
__le16 volume_name[512];
__le32 extension_count;
__u8 extension_list[F2FS_MAX_EXTENSION][8];
__le32 cp_payload;
} __packed;
#define CP_FSCK_FLAG 0x00000010
#define CP_ERROR_FLAG 0x00000008
#define CP_COMPACT_SUM_FLAG 0x00000004
#define CP_ORPHAN_PRESENT_FLAG 0x00000002
#define CP_UMOUNT_FLAG 0x00000001
#define F2FS_CP_PACKS 2
struct f2fs_checkpoint {
__le64 checkpoint_ver;
__le64 user_block_count;
__le64 valid_block_count;
__le32 rsvd_segment_count;
__le32 overprov_segment_count;
__le32 free_segment_count;
__le32 cur_node_segno[MAX_ACTIVE_NODE_LOGS];
__le16 cur_node_blkoff[MAX_ACTIVE_NODE_LOGS];
__le32 cur_data_segno[MAX_ACTIVE_DATA_LOGS];
__le16 cur_data_blkoff[MAX_ACTIVE_DATA_LOGS];
__le32 ckpt_flags;
__le32 cp_pack_total_block_count;
__le32 cp_pack_start_sum;
__le32 valid_node_count;
__le32 valid_inode_count;
__le32 next_free_nid;
__le32 sit_ver_bitmap_bytesize;
__le32 nat_ver_bitmap_bytesize;
__le32 checksum_offset;
__le64 elapsed_time;
unsigned char alloc_type[MAX_ACTIVE_LOGS];
unsigned char sit_nat_version_bitmap[1];
} __packed;
#define F2FS_ORPHANS_PER_BLOCK 1020
#define GET_ORPHAN_BLOCKS(n) ((n + F2FS_ORPHANS_PER_BLOCK - 1) / \
F2FS_ORPHANS_PER_BLOCK)
struct f2fs_orphan_block {
__le32 ino[F2FS_ORPHANS_PER_BLOCK];
__le32 reserved;
__le16 blk_addr;
__le16 blk_count;
__le32 entry_count;
__le32 check_sum;
} __packed;
struct f2fs_extent {
__le32 fofs;
__le32 blk_addr;
__le32 len;
} __packed;
#define F2FS_NAME_LEN 255
#define F2FS_INLINE_XATTR_ADDRS 50
#define DEF_ADDRS_PER_INODE 923
#define DEF_NIDS_PER_INODE 5
#define ADDRS_PER_INODE(fi) addrs_per_inode(fi)
#define ADDRS_PER_BLOCK 1018
#define NIDS_PER_BLOCK 1018
#define ADDRS_PER_PAGE(page, fi) \
(IS_INODE(page) ? ADDRS_PER_INODE(fi) : ADDRS_PER_BLOCK)
#define NODE_DIR1_BLOCK (DEF_ADDRS_PER_INODE + 1)
#define NODE_DIR2_BLOCK (DEF_ADDRS_PER_INODE + 2)
#define NODE_IND1_BLOCK (DEF_ADDRS_PER_INODE + 3)
#define NODE_IND2_BLOCK (DEF_ADDRS_PER_INODE + 4)
#define NODE_DIND_BLOCK (DEF_ADDRS_PER_INODE + 5)
#define F2FS_INLINE_XATTR 0x01
#define F2FS_INLINE_DATA 0x02
#define MAX_INLINE_DATA (sizeof(__le32) * (DEF_ADDRS_PER_INODE - \
F2FS_INLINE_XATTR_ADDRS - 1))
#define INLINE_DATA_OFFSET (PAGE_CACHE_SIZE - sizeof(struct node_footer) -\
sizeof(__le32) * (DEF_ADDRS_PER_INODE + \
DEF_NIDS_PER_INODE - 1))
struct f2fs_inode {
__le16 i_mode;
__u8 i_advise;
__u8 i_inline;
__le32 i_uid;
__le32 i_gid;
__le32 i_links;
__le64 i_size;
__le64 i_blocks;
__le64 i_atime;
__le64 i_ctime;
__le64 i_mtime;
__le32 i_atime_nsec;
__le32 i_ctime_nsec;
__le32 i_mtime_nsec;
__le32 i_generation;
__le32 i_current_depth;
__le32 i_xattr_nid;
__le32 i_flags;
__le32 i_pino;
__le32 i_namelen;
__u8 i_name[F2FS_NAME_LEN];
__u8 i_dir_level;
struct f2fs_extent i_ext;
__le32 i_addr[DEF_ADDRS_PER_INODE];
__le32 i_nid[DEF_NIDS_PER_INODE];
} __packed;
struct direct_node {
__le32 addr[ADDRS_PER_BLOCK];
} __packed;
struct indirect_node {
__le32 nid[NIDS_PER_BLOCK];
} __packed;
enum {
COLD_BIT_SHIFT = 0,
FSYNC_BIT_SHIFT,
DENT_BIT_SHIFT,
OFFSET_BIT_SHIFT
};
struct node_footer {
__le32 nid;
__le32 ino;
__le32 flag;
__le64 cp_ver;
__le32 next_blkaddr;
} __packed;
struct f2fs_node {
union {
struct f2fs_inode i;
struct direct_node dn;
struct indirect_node in;
};
struct node_footer footer;
} __packed;
#define NAT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_nat_entry))
struct f2fs_nat_entry {
__u8 version;
__le32 ino;
__le32 block_addr;
} __packed;
struct f2fs_nat_block {
struct f2fs_nat_entry entries[NAT_ENTRY_PER_BLOCK];
} __packed;
#define SIT_VBLOCK_MAP_SIZE 64
#define SIT_ENTRY_PER_BLOCK (PAGE_CACHE_SIZE / sizeof(struct f2fs_sit_entry))
#define SIT_VBLOCKS_SHIFT 10
#define SIT_VBLOCKS_MASK ((1 << SIT_VBLOCKS_SHIFT) - 1)
#define GET_SIT_VBLOCKS(raw_sit) \
(le16_to_cpu((raw_sit)->vblocks) & SIT_VBLOCKS_MASK)
#define GET_SIT_TYPE(raw_sit) \
((le16_to_cpu((raw_sit)->vblocks) & ~SIT_VBLOCKS_MASK) \
>> SIT_VBLOCKS_SHIFT)
struct f2fs_sit_entry {
__le16 vblocks;
__u8 valid_map[SIT_VBLOCK_MAP_SIZE];
__le64 mtime;
} __packed;
struct f2fs_sit_block {
struct f2fs_sit_entry entries[SIT_ENTRY_PER_BLOCK];
} __packed;
#define ENTRIES_IN_SUM 512
#define SUMMARY_SIZE (7)
#define SUM_FOOTER_SIZE (5)
#define SUM_ENTRY_SIZE (SUMMARY_SIZE * ENTRIES_IN_SUM)
struct f2fs_summary {
__le32 nid;
union {
__u8 reserved[3];
struct {
__u8 version;
__le16 ofs_in_node;
} __packed;
};
} __packed;
#define SUM_TYPE_NODE (1)
#define SUM_TYPE_DATA (0)
struct summary_footer {
unsigned char entry_type;
__u32 check_sum;
} __packed;
#define SUM_JOURNAL_SIZE (F2FS_BLKSIZE - SUM_FOOTER_SIZE -\
SUM_ENTRY_SIZE)
#define NAT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct nat_journal_entry))
#define NAT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct nat_journal_entry))
#define SIT_JOURNAL_ENTRIES ((SUM_JOURNAL_SIZE - 2) /\
sizeof(struct sit_journal_entry))
#define SIT_JOURNAL_RESERVED ((SUM_JOURNAL_SIZE - 2) %\
sizeof(struct sit_journal_entry))
enum {
NAT_JOURNAL = 0,
SIT_JOURNAL
};
struct nat_journal_entry {
__le32 nid;
struct f2fs_nat_entry ne;
} __packed;
struct nat_journal {
struct nat_journal_entry entries[NAT_JOURNAL_ENTRIES];
__u8 reserved[NAT_JOURNAL_RESERVED];
} __packed;
struct sit_journal_entry {
__le32 segno;
struct f2fs_sit_entry se;
} __packed;
struct sit_journal {
struct sit_journal_entry entries[SIT_JOURNAL_ENTRIES];
__u8 reserved[SIT_JOURNAL_RESERVED];
} __packed;
struct f2fs_summary_block {
struct f2fs_summary entries[ENTRIES_IN_SUM];
union {
__le16 n_nats;
__le16 n_sits;
};
union {
struct nat_journal nat_j;
struct sit_journal sit_j;
};
struct summary_footer footer;
} __packed;
#define F2FS_DOT_HASH 0
#define F2FS_DDOT_HASH F2FS_DOT_HASH
#define F2FS_MAX_HASH (~((0x3ULL) << 62))
#define F2FS_HASH_COL_BIT ((0x1ULL) << 63)
typedef __le32 f2fs_hash_t;
#define F2FS_SLOT_LEN 8
#define F2FS_SLOT_LEN_BITS 3
#define GET_DENTRY_SLOTS(x) ((x + F2FS_SLOT_LEN - 1) >> F2FS_SLOT_LEN_BITS)
#define NR_DENTRY_IN_BLOCK 214
#define MAX_DIR_HASH_DEPTH 63
#define MAX_DIR_BUCKETS (1 << ((MAX_DIR_HASH_DEPTH / 2) - 1))
#define SIZE_OF_DIR_ENTRY 11
#define SIZE_OF_DENTRY_BITMAP ((NR_DENTRY_IN_BLOCK + BITS_PER_BYTE - 1) / \
BITS_PER_BYTE)
#define SIZE_OF_RESERVED (PAGE_SIZE - ((SIZE_OF_DIR_ENTRY + \
F2FS_SLOT_LEN) * \
NR_DENTRY_IN_BLOCK + SIZE_OF_DENTRY_BITMAP))
struct f2fs_dir_entry {
__le32 hash_code;
__le32 ino;
__le16 name_len;
__u8 file_type;
} __packed;
struct f2fs_dentry_block {
__u8 dentry_bitmap[SIZE_OF_DENTRY_BITMAP];
__u8 reserved[SIZE_OF_RESERVED];
struct f2fs_dir_entry dentry[NR_DENTRY_IN_BLOCK];
__u8 filename[NR_DENTRY_IN_BLOCK][F2FS_SLOT_LEN];
} __packed;
enum {
F2FS_FT_UNKNOWN,
F2FS_FT_REG_FILE,
F2FS_FT_DIR,
F2FS_FT_CHRDEV,
F2FS_FT_BLKDEV,
F2FS_FT_FIFO,
F2FS_FT_SOCK,
F2FS_FT_SYMLINK,
F2FS_FT_MAX
};
#endif