root/include/linux/pagemap.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. mapping_set_error
  2. mapping_set_unevictable
  3. mapping_clear_unevictable
  4. mapping_unevictable
  5. mapping_set_exiting
  6. mapping_exiting
  7. mapping_gfp_mask
  8. mapping_set_gfp_mask
  9. page_cache_get_speculative
  10. page_cache_add_speculative
  11. page_freeze_refs
  12. page_unfreeze_refs
  13. __page_cache_alloc
  14. page_cache_alloc
  15. page_cache_alloc_cold
  16. page_cache_alloc_readahead
  17. find_get_page
  18. find_get_page_flags
  19. find_lock_page
  20. find_or_create_page
  21. grab_cache_page_nowait
  22. grab_cache_page
  23. read_mapping_page
  24. page_to_pgoff
  25. page_offset
  26. page_file_offset
  27. linear_page_index
  28. __set_page_locked
  29. __clear_page_locked
  30. trylock_page
  31. lock_page
  32. lock_page_killable
  33. lock_page_or_retry
  34. wait_on_page_locked_killable
  35. wake_up_page
  36. wait_on_page_locked
  37. wait_on_page_writeback
  38. fault_in_pages_writeable
  39. fault_in_pages_readable
  40. fault_in_multipages_writeable
  41. fault_in_multipages_readable
  42. add_to_page_cache

#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H

/*
 * Copyright 1995 Linus Torvalds
 */
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>

/*
 * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
 * allocation mode flags.
 */
enum mapping_flags {
        AS_EIO          = __GFP_BITS_SHIFT + 0, /* IO error on async write */
        AS_ENOSPC       = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
        AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
        AS_UNEVICTABLE  = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
        AS_EXITING      = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
};

static inline void mapping_set_error(struct address_space *mapping, int error)
{
        if (unlikely(error)) {
                if (error == -ENOSPC)
                        set_bit(AS_ENOSPC, &mapping->flags);
                else
                        set_bit(AS_EIO, &mapping->flags);
        }
}

static inline void mapping_set_unevictable(struct address_space *mapping)
{
        set_bit(AS_UNEVICTABLE, &mapping->flags);
}

static inline void mapping_clear_unevictable(struct address_space *mapping)
{
        clear_bit(AS_UNEVICTABLE, &mapping->flags);
}

static inline int mapping_unevictable(struct address_space *mapping)
{
        if (mapping)
                return test_bit(AS_UNEVICTABLE, &mapping->flags);
        return !!mapping;
}

static inline void mapping_set_exiting(struct address_space *mapping)
{
        set_bit(AS_EXITING, &mapping->flags);
}

static inline int mapping_exiting(struct address_space *mapping)
{
        return test_bit(AS_EXITING, &mapping->flags);
}

static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
{
        return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
}

/*
 * This is non-atomic.  Only to be used before the mapping is activated.
 * Probably needs a barrier...
 */
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
{
        m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
                                (__force unsigned long)mask;
}

/*
 * The page cache can be done in larger chunks than
 * one page, because it allows for more efficient
 * throughput (it can then be mapped into user
 * space in smaller chunks for same flexibility).
 *
 * Or rather, it _will_ be done in larger chunks.
 */
#define PAGE_CACHE_SHIFT        PAGE_SHIFT
#define PAGE_CACHE_SIZE         PAGE_SIZE
#define PAGE_CACHE_MASK         PAGE_MASK
#define PAGE_CACHE_ALIGN(addr)  (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)

#define page_cache_get(page)            get_page(page)
#define page_cache_release(page)        put_page(page)
void release_pages(struct page **pages, int nr, bool cold);

/*
 * speculatively take a reference to a page.
 * If the page is free (_count == 0), then _count is untouched, and 0
 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
 *
 * This function must be called inside the same rcu_read_lock() section as has
 * been used to lookup the page in the pagecache radix-tree (or page table):
 * this allows allocators to use a synchronize_rcu() to stabilize _count.
 *
 * Unless an RCU grace period has passed, the count of all pages coming out
 * of the allocator must be considered unstable. page_count may return higher
 * than expected, and put_page must be able to do the right thing when the
 * page has been finished with, no matter what it is subsequently allocated
 * for (because put_page is what is used here to drop an invalid speculative
 * reference).
 *
 * This is the interesting part of the lockless pagecache (and lockless
 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
 * has the following pattern:
 * 1. find page in radix tree
 * 2. conditionally increment refcount
 * 3. check the page is still in pagecache (if no, goto 1)
 *
 * Remove-side that cares about stability of _count (eg. reclaim) has the
 * following (with tree_lock held for write):
 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
 * B. remove page from pagecache
 * C. free the page
 *
 * There are 2 critical interleavings that matter:
 * - 2 runs before A: in this case, A sees elevated refcount and bails out
 * - A runs before 2: in this case, 2 sees zero refcount and retries;
 *   subsequently, B will complete and 1 will find no page, causing the
 *   lookup to return NULL.
 *
 * It is possible that between 1 and 2, the page is removed then the exact same
 * page is inserted into the same position in pagecache. That's OK: the
 * old find_get_page using tree_lock could equally have run before or after
 * such a re-insertion, depending on order that locks are granted.
 *
 * Lookups racing against pagecache insertion isn't a big problem: either 1
 * will find the page or it will not. Likewise, the old find_get_page could run
 * either before the insertion or afterwards, depending on timing.
 */
static inline int page_cache_get_speculative(struct page *page)
{
        VM_BUG_ON(in_interrupt());

#ifdef CONFIG_TINY_RCU
# ifdef CONFIG_PREEMPT_COUNT
        VM_BUG_ON(!in_atomic());
# endif
        /*
         * Preempt must be disabled here - we rely on rcu_read_lock doing
         * this for us.
         *
         * Pagecache won't be truncated from interrupt context, so if we have
         * found a page in the radix tree here, we have pinned its refcount by
         * disabling preempt, and hence no need for the "speculative get" that
         * SMP requires.
         */
        VM_BUG_ON_PAGE(page_count(page) == 0, page);
        atomic_inc(&page->_count);

#else
        if (unlikely(!get_page_unless_zero(page))) {
                /*
                 * Either the page has been freed, or will be freed.
                 * In either case, retry here and the caller should
                 * do the right thing (see comments above).
                 */
                return 0;
        }
#endif
        VM_BUG_ON_PAGE(PageTail(page), page);

        return 1;
}

/*
 * Same as above, but add instead of inc (could just be merged)
 */
static inline int page_cache_add_speculative(struct page *page, int count)
{
        VM_BUG_ON(in_interrupt());

#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
# ifdef CONFIG_PREEMPT_COUNT
        VM_BUG_ON(!in_atomic());
# endif
        VM_BUG_ON_PAGE(page_count(page) == 0, page);
        atomic_add(count, &page->_count);

#else
        if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
                return 0;
#endif
        VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);

        return 1;
}

static inline int page_freeze_refs(struct page *page, int count)
{
        return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
}

static inline void page_unfreeze_refs(struct page *page, int count)
{
        VM_BUG_ON_PAGE(page_count(page) != 0, page);
        VM_BUG_ON(count == 0);

        atomic_set(&page->_count, count);
}

#ifdef CONFIG_NUMA
extern struct page *__page_cache_alloc(gfp_t gfp);
#else
static inline struct page *__page_cache_alloc(gfp_t gfp)
{
        return alloc_pages(gfp, 0);
}
#endif

static inline struct page *page_cache_alloc(struct address_space *x)
{
        return __page_cache_alloc(mapping_gfp_mask(x));
}

static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
        return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
}

static inline struct page *page_cache_alloc_readahead(struct address_space *x)
{
        return __page_cache_alloc(mapping_gfp_mask(x) |
                                  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
}

typedef int filler_t(void *, struct page *);

pgoff_t page_cache_next_hole(struct address_space *mapping,
                             pgoff_t index, unsigned long max_scan);
pgoff_t page_cache_prev_hole(struct address_space *mapping,
                             pgoff_t index, unsigned long max_scan);

#define FGP_ACCESSED            0x00000001
#define FGP_LOCK                0x00000002
#define FGP_CREAT               0x00000004
#define FGP_WRITE               0x00000008
#define FGP_NOFS                0x00000010
#define FGP_NOWAIT              0x00000020

struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
                int fgp_flags, gfp_t cache_gfp_mask);

/**
 * find_get_page - find and get a page reference
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned with an increased refcount.
 *
 * Otherwise, %NULL is returned.
 */
static inline struct page *find_get_page(struct address_space *mapping,
                                        pgoff_t offset)
{
        return pagecache_get_page(mapping, offset, 0, 0);
}

static inline struct page *find_get_page_flags(struct address_space *mapping,
                                        pgoff_t offset, int fgp_flags)
{
        return pagecache_get_page(mapping, offset, fgp_flags, 0);
}

/**
 * find_lock_page - locate, pin and lock a pagecache page
 * pagecache_get_page - find and get a page reference
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
 * Otherwise, %NULL is returned.
 *
 * find_lock_page() may sleep.
 */
static inline struct page *find_lock_page(struct address_space *mapping,
                                        pgoff_t offset)
{
        return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
}

/**
 * find_or_create_page - locate or add a pagecache page
 * @mapping: the page's address_space
 * @index: the page's index into the mapping
 * @gfp_mask: page allocation mode
 *
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 * page cache page, it is returned locked and with an increased
 * refcount.
 *
 * If the page is not present, a new page is allocated using @gfp_mask
 * and added to the page cache and the VM's LRU list.  The page is
 * returned locked and with an increased refcount.
 *
 * On memory exhaustion, %NULL is returned.
 *
 * find_or_create_page() may sleep, even if @gfp_flags specifies an
 * atomic allocation!
 */
static inline struct page *find_or_create_page(struct address_space *mapping,
                                        pgoff_t offset, gfp_t gfp_mask)
{
        return pagecache_get_page(mapping, offset,
                                        FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
                                        gfp_mask);
}

/**
 * grab_cache_page_nowait - returns locked page at given index in given cache
 * @mapping: target address_space
 * @index: the page index
 *
 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 * This is intended for speculative data generators, where the data can
 * be regenerated if the page couldn't be grabbed.  This routine should
 * be safe to call while holding the lock for another page.
 *
 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 * and deadlock against the caller's locked page.
 */
static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
                                pgoff_t index)
{
        return pagecache_get_page(mapping, index,
                        FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
                        mapping_gfp_mask(mapping));
}

struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
                          unsigned int nr_entries, struct page **entries,
                          pgoff_t *indices);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
                        unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
                               unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
                        int tag, unsigned int nr_pages, struct page **pages);

struct page *grab_cache_page_write_begin(struct address_space *mapping,
                        pgoff_t index, unsigned flags);

/*
 * Returns locked page at given index in given cache, creating it if needed.
 */
static inline struct page *grab_cache_page(struct address_space *mapping,
                                                                pgoff_t index)
{
        return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}

extern struct page * read_cache_page(struct address_space *mapping,
                                pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page_gfp(struct address_space *mapping,
                                pgoff_t index, gfp_t gfp_mask);
extern int read_cache_pages(struct address_space *mapping,
                struct list_head *pages, filler_t *filler, void *data);

static inline struct page *read_mapping_page(struct address_space *mapping,
                                pgoff_t index, void *data)
{
        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
        return read_cache_page(mapping, index, filler, data);
}

/*
 * Get the offset in PAGE_SIZE.
 * (TODO: hugepage should have ->index in PAGE_SIZE)
 */
static inline pgoff_t page_to_pgoff(struct page *page)
{
        if (unlikely(PageHeadHuge(page)))
                return page->index << compound_order(page);
        else
                return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}

/*
 * Return byte-offset into filesystem object for page.
 */
static inline loff_t page_offset(struct page *page)
{
        return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}

static inline loff_t page_file_offset(struct page *page)
{
        return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
}

extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
                                     unsigned long address);

static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
                                        unsigned long address)
{
        pgoff_t pgoff;
        if (unlikely(is_vm_hugetlb_page(vma)))
                return linear_hugepage_index(vma, address);
        pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
        pgoff += vma->vm_pgoff;
        return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}

extern void __lock_page(struct page *page);
extern int __lock_page_killable(struct page *page);
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
                                unsigned int flags);
extern void unlock_page(struct page *page);

static inline void __set_page_locked(struct page *page)
{
        __set_bit(PG_locked, &page->flags);
}

static inline void __clear_page_locked(struct page *page)
{
        __clear_bit(PG_locked, &page->flags);
}

static inline int trylock_page(struct page *page)
{
        return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
}

/*
 * lock_page may only be called if we have the page's inode pinned.
 */
static inline void lock_page(struct page *page)
{
        might_sleep();
        if (!trylock_page(page))
                __lock_page(page);
}

/*
 * lock_page_killable is like lock_page but can be interrupted by fatal
 * signals.  It returns 0 if it locked the page and -EINTR if it was
 * killed while waiting.
 */
static inline int lock_page_killable(struct page *page)
{
        might_sleep();
        if (!trylock_page(page))
                return __lock_page_killable(page);
        return 0;
}

/*
 * lock_page_or_retry - Lock the page, unless this would block and the
 * caller indicated that it can handle a retry.
 *
 * Return value and mmap_sem implications depend on flags; see
 * __lock_page_or_retry().
 */
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
                                     unsigned int flags)
{
        might_sleep();
        return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
}

/*
 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
 * and for filesystems which need to wait on PG_private.
 */
extern void wait_on_page_bit(struct page *page, int bit_nr);

extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
extern int wait_on_page_bit_killable_timeout(struct page *page,
                                             int bit_nr, unsigned long timeout);

static inline int wait_on_page_locked_killable(struct page *page)
{
        if (PageLocked(page))
                return wait_on_page_bit_killable(page, PG_locked);
        return 0;
}

extern wait_queue_head_t *page_waitqueue(struct page *page);
static inline void wake_up_page(struct page *page, int bit)
{
        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
}

/* 
 * Wait for a page to be unlocked.
 *
 * This must be called with the caller "holding" the page,
 * ie with increased "page->count" so that the page won't
 * go away during the wait..
 */
static inline void wait_on_page_locked(struct page *page)
{
        if (PageLocked(page))
                wait_on_page_bit(page, PG_locked);
}

/* 
 * Wait for a page to complete writeback
 */
static inline void wait_on_page_writeback(struct page *page)
{
        if (PageWriteback(page))
                wait_on_page_bit(page, PG_writeback);
}

extern void end_page_writeback(struct page *page);
void wait_for_stable_page(struct page *page);

void page_endio(struct page *page, int rw, int err);

/*
 * Add an arbitrary waiter to a page's wait queue
 */
extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);

/*
 * Fault a userspace page into pagetables.  Return non-zero on a fault.
 *
 * This assumes that two userspace pages are always sufficient.  That's
 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
 */
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
        int ret;

        if (unlikely(size == 0))
                return 0;

        /*
         * Writing zeroes into userspace here is OK, because we know that if
         * the zero gets there, we'll be overwriting it.
         */
        ret = __put_user(0, uaddr);
        if (ret == 0) {
                char __user *end = uaddr + size - 1;

                /*
                 * If the page was already mapped, this will get a cache miss
                 * for sure, so try to avoid doing it.
                 */
                if (((unsigned long)uaddr & PAGE_MASK) !=
                                ((unsigned long)end & PAGE_MASK))
                        ret = __put_user(0, end);
        }
        return ret;
}

static inline int fault_in_pages_readable(const char __user *uaddr, int size)
{
        volatile char c;
        int ret;

        if (unlikely(size == 0))
                return 0;

        ret = __get_user(c, uaddr);
        if (ret == 0) {
                const char __user *end = uaddr + size - 1;

                if (((unsigned long)uaddr & PAGE_MASK) !=
                                ((unsigned long)end & PAGE_MASK)) {
                        ret = __get_user(c, end);
                        (void)c;
                }
        }
        return ret;
}

/*
 * Multipage variants of the above prefault helpers, useful if more than
 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
 * filemap.c hotpaths.
 */
static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
{
        int ret = 0;
        char __user *end = uaddr + size - 1;

        if (unlikely(size == 0))
                return ret;

        /*
         * Writing zeroes into userspace here is OK, because we know that if
         * the zero gets there, we'll be overwriting it.
         */
        while (uaddr <= end) {
                ret = __put_user(0, uaddr);
                if (ret != 0)
                        return ret;
                uaddr += PAGE_SIZE;
        }

        /* Check whether the range spilled into the next page. */
        if (((unsigned long)uaddr & PAGE_MASK) ==
                        ((unsigned long)end & PAGE_MASK))
                ret = __put_user(0, end);

        return ret;
}

static inline int fault_in_multipages_readable(const char __user *uaddr,
                                               int size)
{
        volatile char c;
        int ret = 0;
        const char __user *end = uaddr + size - 1;

        if (unlikely(size == 0))
                return ret;

        while (uaddr <= end) {
                ret = __get_user(c, uaddr);
                if (ret != 0)
                        return ret;
                uaddr += PAGE_SIZE;
        }

        /* Check whether the range spilled into the next page. */
        if (((unsigned long)uaddr & PAGE_MASK) ==
                        ((unsigned long)end & PAGE_MASK)) {
                ret = __get_user(c, end);
                (void)c;
        }

        return ret;
}

int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
                                pgoff_t index, gfp_t gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
                                pgoff_t index, gfp_t gfp_mask);
extern void delete_from_page_cache(struct page *page);
extern void __delete_from_page_cache(struct page *page, void *shadow);
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);

/*
 * Like add_to_page_cache_locked, but used to add newly allocated pages:
 * the page is new, so we can just run __set_page_locked() against it.
 */
static inline int add_to_page_cache(struct page *page,
                struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
{
        int error;

        __set_page_locked(page);
        error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
        if (unlikely(error))
                __clear_page_locked(page);
        return error;
}

#endif /* _LINUX_PAGEMAP_H */

/* [<][>][^][v][top][bottom][index][help] */