root/include/net/bluetooth/hci_core.h

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. discovery_init
  2. inquiry_cache_empty
  3. inquiry_cache_age
  4. inquiry_entry_age
  5. hci_conn_ssp_enabled
  6. hci_conn_sc_enabled
  7. hci_conn_hash_add
  8. hci_conn_hash_del
  9. hci_conn_num
  10. hci_conn_count
  11. hci_conn_hash_lookup_handle
  12. hci_conn_hash_lookup_ba
  13. hci_conn_hash_lookup_state
  14. hci_conn_get
  15. hci_conn_put
  16. hci_conn_hold
  17. hci_conn_drop
  18. hci_dev_put
  19. hci_dev_hold
  20. hci_get_drvdata
  21. hci_set_drvdata
  22. hci_proto_connect_ind
  23. hci_proto_connect_cfm
  24. hci_proto_disconn_ind
  25. hci_proto_disconn_cfm
  26. hci_proto_auth_cfm
  27. hci_proto_encrypt_cfm
  28. hci_auth_cfm
  29. hci_encrypt_cfm
  30. hci_key_change_cfm
  31. hci_role_switch_cfm
  32. eir_has_data_type
  33. hci_bdaddr_is_rpa
  34. hci_is_identity_address
  35. hci_get_irk
  36. hci_check_conn_params

/*
   BlueZ - Bluetooth protocol stack for Linux
   Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.

   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

#ifndef __HCI_CORE_H
#define __HCI_CORE_H

#include <net/bluetooth/hci.h>
#include <net/bluetooth/hci_sock.h>

/* HCI priority */
#define HCI_PRIO_MAX    7

/* HCI Core structures */
struct inquiry_data {
        bdaddr_t        bdaddr;
        __u8            pscan_rep_mode;
        __u8            pscan_period_mode;
        __u8            pscan_mode;
        __u8            dev_class[3];
        __le16          clock_offset;
        __s8            rssi;
        __u8            ssp_mode;
};

struct inquiry_entry {
        struct list_head        all;            /* inq_cache.all */
        struct list_head        list;           /* unknown or resolve */
        enum {
                NAME_NOT_KNOWN,
                NAME_NEEDED,
                NAME_PENDING,
                NAME_KNOWN,
        } name_state;
        __u32                   timestamp;
        struct inquiry_data     data;
};

struct discovery_state {
        int                     type;
        enum {
                DISCOVERY_STOPPED,
                DISCOVERY_STARTING,
                DISCOVERY_FINDING,
                DISCOVERY_RESOLVING,
                DISCOVERY_STOPPING,
        } state;
        struct list_head        all;    /* All devices found during inquiry */
        struct list_head        unknown;        /* Name state not known */
        struct list_head        resolve;        /* Name needs to be resolved */
        __u32                   timestamp;
        bdaddr_t                last_adv_addr;
        u8                      last_adv_addr_type;
        s8                      last_adv_rssi;
        u32                     last_adv_flags;
        u8                      last_adv_data[HCI_MAX_AD_LENGTH];
        u8                      last_adv_data_len;
};

struct hci_conn_hash {
        struct list_head list;
        unsigned int     acl_num;
        unsigned int     amp_num;
        unsigned int     sco_num;
        unsigned int     le_num;
        unsigned int     le_num_slave;
};

struct bdaddr_list {
        struct list_head list;
        bdaddr_t bdaddr;
        u8 bdaddr_type;
};

struct bt_uuid {
        struct list_head list;
        u8 uuid[16];
        u8 size;
        u8 svc_hint;
};

struct smp_csrk {
        bdaddr_t bdaddr;
        u8 bdaddr_type;
        u8 master;
        u8 val[16];
};

struct smp_ltk {
        struct list_head list;
        bdaddr_t bdaddr;
        u8 bdaddr_type;
        u8 authenticated;
        u8 type;
        u8 enc_size;
        __le16 ediv;
        __le64 rand;
        u8 val[16];
};

struct smp_irk {
        struct list_head list;
        bdaddr_t rpa;
        bdaddr_t bdaddr;
        u8 addr_type;
        u8 val[16];
};

struct link_key {
        struct list_head list;
        bdaddr_t bdaddr;
        u8 type;
        u8 val[HCI_LINK_KEY_SIZE];
        u8 pin_len;
};

struct oob_data {
        struct list_head list;
        bdaddr_t bdaddr;
        u8 hash192[16];
        u8 randomizer192[16];
        u8 hash256[16];
        u8 randomizer256[16];
};

#define HCI_MAX_SHORT_NAME_LENGTH       10

/* Default LE RPA expiry time, 15 minutes */
#define HCI_DEFAULT_RPA_TIMEOUT         (15 * 60)

/* Default min/max age of connection information (1s/3s) */
#define DEFAULT_CONN_INFO_MIN_AGE       1000
#define DEFAULT_CONN_INFO_MAX_AGE       3000

struct amp_assoc {
        __u16   len;
        __u16   offset;
        __u16   rem_len;
        __u16   len_so_far;
        __u8    data[HCI_MAX_AMP_ASSOC_SIZE];
};

#define HCI_MAX_PAGES   3

#define NUM_REASSEMBLY 4
struct hci_dev {
        struct list_head list;
        struct mutex    lock;

        char            name[8];
        unsigned long   flags;
        __u16           id;
        __u8            bus;
        __u8            dev_type;
        bdaddr_t        bdaddr;
        bdaddr_t        setup_addr;
        bdaddr_t        public_addr;
        bdaddr_t        random_addr;
        bdaddr_t        static_addr;
        __u8            adv_addr_type;
        __u8            dev_name[HCI_MAX_NAME_LENGTH];
        __u8            short_name[HCI_MAX_SHORT_NAME_LENGTH];
        __u8            eir[HCI_MAX_EIR_LENGTH];
        __u8            dev_class[3];
        __u8            major_class;
        __u8            minor_class;
        __u8            max_page;
        __u8            features[HCI_MAX_PAGES][8];
        __u8            le_features[8];
        __u8            le_white_list_size;
        __u8            le_states[8];
        __u8            commands[64];
        __u8            hci_ver;
        __u16           hci_rev;
        __u8            lmp_ver;
        __u16           manufacturer;
        __u16           lmp_subver;
        __u16           voice_setting;
        __u8            num_iac;
        __u8            io_capability;
        __s8            inq_tx_power;
        __u16           page_scan_interval;
        __u16           page_scan_window;
        __u8            page_scan_type;
        __u8            le_adv_channel_map;
        __u16           le_adv_min_interval;
        __u16           le_adv_max_interval;
        __u8            le_scan_type;
        __u16           le_scan_interval;
        __u16           le_scan_window;
        __u16           le_conn_min_interval;
        __u16           le_conn_max_interval;
        __u16           le_conn_latency;
        __u16           le_supv_timeout;
        __u16           discov_interleaved_timeout;
        __u16           conn_info_min_age;
        __u16           conn_info_max_age;
        __u8            ssp_debug_mode;
        __u32           clock;

        __u16           devid_source;
        __u16           devid_vendor;
        __u16           devid_product;
        __u16           devid_version;

        __u16           pkt_type;
        __u16           esco_type;
        __u16           link_policy;
        __u16           link_mode;

        __u32           idle_timeout;
        __u16           sniff_min_interval;
        __u16           sniff_max_interval;

        __u8            amp_status;
        __u32           amp_total_bw;
        __u32           amp_max_bw;
        __u32           amp_min_latency;
        __u32           amp_max_pdu;
        __u8            amp_type;
        __u16           amp_pal_cap;
        __u16           amp_assoc_size;
        __u32           amp_max_flush_to;
        __u32           amp_be_flush_to;

        struct amp_assoc        loc_assoc;

        __u8            flow_ctl_mode;

        unsigned int    auto_accept_delay;

        unsigned long   quirks;

        atomic_t        cmd_cnt;
        unsigned int    acl_cnt;
        unsigned int    sco_cnt;
        unsigned int    le_cnt;

        unsigned int    acl_mtu;
        unsigned int    sco_mtu;
        unsigned int    le_mtu;
        unsigned int    acl_pkts;
        unsigned int    sco_pkts;
        unsigned int    le_pkts;

        __u16           block_len;
        __u16           block_mtu;
        __u16           num_blocks;
        __u16           block_cnt;

        unsigned long   acl_last_tx;
        unsigned long   sco_last_tx;
        unsigned long   le_last_tx;

        struct workqueue_struct *workqueue;
        struct workqueue_struct *req_workqueue;

        struct work_struct      power_on;
        struct delayed_work     power_off;

        __u16                   discov_timeout;
        struct delayed_work     discov_off;

        struct delayed_work     service_cache;

        struct delayed_work     cmd_timer;

        struct work_struct      rx_work;
        struct work_struct      cmd_work;
        struct work_struct      tx_work;

        struct sk_buff_head     rx_q;
        struct sk_buff_head     raw_q;
        struct sk_buff_head     cmd_q;

        struct sk_buff          *recv_evt;
        struct sk_buff          *sent_cmd;
        struct sk_buff          *reassembly[NUM_REASSEMBLY];

        struct mutex            req_lock;
        wait_queue_head_t       req_wait_q;
        __u32                   req_status;
        __u32                   req_result;

        void                    *smp_data;

        struct discovery_state  discovery;
        struct hci_conn_hash    conn_hash;

        struct list_head        mgmt_pending;
        struct list_head        blacklist;
        struct list_head        whitelist;
        struct list_head        uuids;
        struct list_head        link_keys;
        struct list_head        long_term_keys;
        struct list_head        identity_resolving_keys;
        struct list_head        remote_oob_data;
        struct list_head        le_white_list;
        struct list_head        le_conn_params;
        struct list_head        pend_le_conns;
        struct list_head        pend_le_reports;

        struct hci_dev_stats    stat;

        atomic_t                promisc;

        struct dentry           *debugfs;

        struct device           dev;

        struct rfkill           *rfkill;

        unsigned long           dbg_flags;
        unsigned long           dev_flags;

        struct delayed_work     le_scan_disable;

        __s8                    adv_tx_power;
        __u8                    adv_data[HCI_MAX_AD_LENGTH];
        __u8                    adv_data_len;
        __u8                    scan_rsp_data[HCI_MAX_AD_LENGTH];
        __u8                    scan_rsp_data_len;

        __u8                    irk[16];
        __u32                   rpa_timeout;
        struct delayed_work     rpa_expired;
        bdaddr_t                rpa;

        int (*open)(struct hci_dev *hdev);
        int (*close)(struct hci_dev *hdev);
        int (*flush)(struct hci_dev *hdev);
        int (*setup)(struct hci_dev *hdev);
        int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
        void (*notify)(struct hci_dev *hdev, unsigned int evt);
        int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
};

#define HCI_PHY_HANDLE(handle)  (handle & 0xff)

struct hci_conn {
        struct list_head list;

        atomic_t        refcnt;

        bdaddr_t        dst;
        __u8            dst_type;
        bdaddr_t        src;
        __u8            src_type;
        bdaddr_t        init_addr;
        __u8            init_addr_type;
        bdaddr_t        resp_addr;
        __u8            resp_addr_type;
        __u16           handle;
        __u16           state;
        __u8            mode;
        __u8            type;
        __u8            role;
        bool            out;
        __u8            attempt;
        __u8            dev_class[3];
        __u8            features[HCI_MAX_PAGES][8];
        __u16           pkt_type;
        __u16           link_policy;
        __u8            key_type;
        __u8            auth_type;
        __u8            sec_level;
        __u8            pending_sec_level;
        __u8            pin_length;
        __u8            enc_key_size;
        __u8            io_capability;
        __u32           passkey_notify;
        __u8            passkey_entered;
        __u16           disc_timeout;
        __u16           conn_timeout;
        __u16           setting;
        __u16           le_conn_min_interval;
        __u16           le_conn_max_interval;
        __u16           le_conn_interval;
        __u16           le_conn_latency;
        __u16           le_supv_timeout;
        __s8            rssi;
        __s8            tx_power;
        __s8            max_tx_power;
        unsigned long   flags;

        __u32           clock;
        __u16           clock_accuracy;

        unsigned long   conn_info_timestamp;

        __u8            remote_cap;
        __u8            remote_auth;
        __u8            remote_id;

        unsigned int    sent;

        struct sk_buff_head data_q;
        struct list_head chan_list;

        struct delayed_work disc_work;
        struct delayed_work auto_accept_work;
        struct delayed_work idle_work;
        struct delayed_work le_conn_timeout;

        struct device   dev;

        struct hci_dev  *hdev;
        void            *l2cap_data;
        void            *sco_data;
        struct amp_mgr  *amp_mgr;

        struct hci_conn *link;

        void (*connect_cfm_cb)  (struct hci_conn *conn, u8 status);
        void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
        void (*disconn_cfm_cb)  (struct hci_conn *conn, u8 reason);
};

struct hci_chan {
        struct list_head list;
        __u16 handle;
        struct hci_conn *conn;
        struct sk_buff_head data_q;
        unsigned int    sent;
        __u8            state;
};

struct hci_conn_params {
        struct list_head list;
        struct list_head action;

        bdaddr_t addr;
        u8 addr_type;

        u16 conn_min_interval;
        u16 conn_max_interval;
        u16 conn_latency;
        u16 supervision_timeout;

        enum {
                HCI_AUTO_CONN_DISABLED,
                HCI_AUTO_CONN_REPORT,
                HCI_AUTO_CONN_DIRECT,
                HCI_AUTO_CONN_ALWAYS,
                HCI_AUTO_CONN_LINK_LOSS,
        } auto_connect;

        struct hci_conn *conn;
};

extern struct list_head hci_dev_list;
extern struct list_head hci_cb_list;
extern rwlock_t hci_dev_list_lock;
extern rwlock_t hci_cb_list_lock;

/* ----- HCI interface to upper protocols ----- */
int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
void l2cap_connect_cfm(struct hci_conn *hcon, u8 status);
int l2cap_disconn_ind(struct hci_conn *hcon);
void l2cap_disconn_cfm(struct hci_conn *hcon, u8 reason);
int l2cap_security_cfm(struct hci_conn *hcon, u8 status, u8 encrypt);
int l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);

int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
void sco_connect_cfm(struct hci_conn *hcon, __u8 status);
void sco_disconn_cfm(struct hci_conn *hcon, __u8 reason);
int sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);

/* ----- Inquiry cache ----- */
#define INQUIRY_CACHE_AGE_MAX   (HZ*30)   /* 30 seconds */
#define INQUIRY_ENTRY_AGE_MAX   (HZ*60)   /* 60 seconds */

static inline void discovery_init(struct hci_dev *hdev)
{
        hdev->discovery.state = DISCOVERY_STOPPED;
        INIT_LIST_HEAD(&hdev->discovery.all);
        INIT_LIST_HEAD(&hdev->discovery.unknown);
        INIT_LIST_HEAD(&hdev->discovery.resolve);
}

bool hci_discovery_active(struct hci_dev *hdev);

void hci_discovery_set_state(struct hci_dev *hdev, int state);

static inline int inquiry_cache_empty(struct hci_dev *hdev)
{
        return list_empty(&hdev->discovery.all);
}

static inline long inquiry_cache_age(struct hci_dev *hdev)
{
        struct discovery_state *c = &hdev->discovery;
        return jiffies - c->timestamp;
}

static inline long inquiry_entry_age(struct inquiry_entry *e)
{
        return jiffies - e->timestamp;
}

struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
                                               bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
                                                       bdaddr_t *bdaddr);
struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
                                                       bdaddr_t *bdaddr,
                                                       int state);
void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
                                      struct inquiry_entry *ie);
u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
                             bool name_known);
void hci_inquiry_cache_flush(struct hci_dev *hdev);

/* ----- HCI Connections ----- */
enum {
        HCI_CONN_AUTH_PEND,
        HCI_CONN_REAUTH_PEND,
        HCI_CONN_ENCRYPT_PEND,
        HCI_CONN_RSWITCH_PEND,
        HCI_CONN_MODE_CHANGE_PEND,
        HCI_CONN_SCO_SETUP_PEND,
        HCI_CONN_MGMT_CONNECTED,
        HCI_CONN_SSP_ENABLED,
        HCI_CONN_SC_ENABLED,
        HCI_CONN_AES_CCM,
        HCI_CONN_POWER_SAVE,
        HCI_CONN_REMOTE_OOB,
        HCI_CONN_FLUSH_KEY,
        HCI_CONN_ENCRYPT,
        HCI_CONN_AUTH,
        HCI_CONN_SECURE,
        HCI_CONN_FIPS,
        HCI_CONN_STK_ENCRYPT,
        HCI_CONN_AUTH_INITIATOR,
        HCI_CONN_DROP,
};

static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
{
        struct hci_dev *hdev = conn->hdev;
        return test_bit(HCI_SSP_ENABLED, &hdev->dev_flags) &&
               test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
}

static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
{
        struct hci_dev *hdev = conn->hdev;
        return test_bit(HCI_SC_ENABLED, &hdev->dev_flags) &&
               test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
}

static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
{
        struct hci_conn_hash *h = &hdev->conn_hash;
        list_add_rcu(&c->list, &h->list);
        switch (c->type) {
        case ACL_LINK:
                h->acl_num++;
                break;
        case AMP_LINK:
                h->amp_num++;
                break;
        case LE_LINK:
                h->le_num++;
                if (c->role == HCI_ROLE_SLAVE)
                        h->le_num_slave++;
                break;
        case SCO_LINK:
        case ESCO_LINK:
                h->sco_num++;
                break;
        }
}

static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
{
        struct hci_conn_hash *h = &hdev->conn_hash;

        list_del_rcu(&c->list);
        synchronize_rcu();

        switch (c->type) {
        case ACL_LINK:
                h->acl_num--;
                break;
        case AMP_LINK:
                h->amp_num--;
                break;
        case LE_LINK:
                h->le_num--;
                if (c->role == HCI_ROLE_SLAVE)
                        h->le_num_slave--;
                break;
        case SCO_LINK:
        case ESCO_LINK:
                h->sco_num--;
                break;
        }
}

static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
{
        struct hci_conn_hash *h = &hdev->conn_hash;
        switch (type) {
        case ACL_LINK:
                return h->acl_num;
        case AMP_LINK:
                return h->amp_num;
        case LE_LINK:
                return h->le_num;
        case SCO_LINK:
        case ESCO_LINK:
                return h->sco_num;
        default:
                return 0;
        }
}

static inline unsigned int hci_conn_count(struct hci_dev *hdev)
{
        struct hci_conn_hash *c = &hdev->conn_hash;

        return c->acl_num + c->amp_num + c->sco_num + c->le_num;
}

static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
                                                                __u16 handle)
{
        struct hci_conn_hash *h = &hdev->conn_hash;
        struct hci_conn  *c;

        rcu_read_lock();

        list_for_each_entry_rcu(c, &h->list, list) {
                if (c->handle == handle) {
                        rcu_read_unlock();
                        return c;
                }
        }
        rcu_read_unlock();

        return NULL;
}

static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
                                                        __u8 type, bdaddr_t *ba)
{
        struct hci_conn_hash *h = &hdev->conn_hash;
        struct hci_conn  *c;

        rcu_read_lock();

        list_for_each_entry_rcu(c, &h->list, list) {
                if (c->type == type && !bacmp(&c->dst, ba)) {
                        rcu_read_unlock();
                        return c;
                }
        }

        rcu_read_unlock();

        return NULL;
}

static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
                                                        __u8 type, __u16 state)
{
        struct hci_conn_hash *h = &hdev->conn_hash;
        struct hci_conn  *c;

        rcu_read_lock();

        list_for_each_entry_rcu(c, &h->list, list) {
                if (c->type == type && c->state == state) {
                        rcu_read_unlock();
                        return c;
                }
        }

        rcu_read_unlock();

        return NULL;
}

int hci_disconnect(struct hci_conn *conn, __u8 reason);
bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
void hci_sco_setup(struct hci_conn *conn, __u8 status);

struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
                              u8 role);
int hci_conn_del(struct hci_conn *conn);
void hci_conn_hash_flush(struct hci_dev *hdev);
void hci_conn_check_pending(struct hci_dev *hdev);

struct hci_chan *hci_chan_create(struct hci_conn *conn);
void hci_chan_del(struct hci_chan *chan);
void hci_chan_list_flush(struct hci_conn *conn);
struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);

struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
                                u8 dst_type, u8 sec_level, u16 conn_timeout,
                                u8 role);
struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
                                 u8 sec_level, u8 auth_type);
struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
                                 __u16 setting);
int hci_conn_check_link_mode(struct hci_conn *conn);
int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
                      bool initiator);
int hci_conn_change_link_key(struct hci_conn *conn);
int hci_conn_switch_role(struct hci_conn *conn, __u8 role);

void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);

void hci_le_conn_failed(struct hci_conn *conn, u8 status);

/*
 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
 * working or anything else. They just guarantee that the object is available
 * and can be dereferenced. So you can use its locks, local variables and any
 * other constant data.
 * Before accessing runtime data, you _must_ lock the object and then check that
 * it is still running. As soon as you release the locks, the connection might
 * get dropped, though.
 *
 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
 * how long the underlying connection is held. So every channel that runs on the
 * hci_conn object calls this to prevent the connection from disappearing. As
 * long as you hold a device, you must also guarantee that you have a valid
 * reference to the device via hci_conn_get() (or the initial reference from
 * hci_conn_add()).
 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
 * break because nobody cares for that. But this means, we cannot use
 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
 */

static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
{
        get_device(&conn->dev);
        return conn;
}

static inline void hci_conn_put(struct hci_conn *conn)
{
        put_device(&conn->dev);
}

static inline void hci_conn_hold(struct hci_conn *conn)
{
        BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));

        atomic_inc(&conn->refcnt);
        cancel_delayed_work(&conn->disc_work);
}

static inline void hci_conn_drop(struct hci_conn *conn)
{
        BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));

        if (atomic_dec_and_test(&conn->refcnt)) {
                unsigned long timeo;

                switch (conn->type) {
                case ACL_LINK:
                case LE_LINK:
                        cancel_delayed_work(&conn->idle_work);
                        if (conn->state == BT_CONNECTED) {
                                timeo = conn->disc_timeout;
                                if (!conn->out)
                                        timeo *= 2;
                        } else {
                                timeo = 0;
                        }
                        break;

                case AMP_LINK:
                        timeo = conn->disc_timeout;
                        break;

                default:
                        timeo = 0;
                        break;
                }

                cancel_delayed_work(&conn->disc_work);
                queue_delayed_work(conn->hdev->workqueue,
                                   &conn->disc_work, timeo);
        }
}

/* ----- HCI Devices ----- */
static inline void hci_dev_put(struct hci_dev *d)
{
        BT_DBG("%s orig refcnt %d", d->name,
               atomic_read(&d->dev.kobj.kref.refcount));

        put_device(&d->dev);
}

static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
{
        BT_DBG("%s orig refcnt %d", d->name,
               atomic_read(&d->dev.kobj.kref.refcount));

        get_device(&d->dev);
        return d;
}

#define hci_dev_lock(d)         mutex_lock(&d->lock)
#define hci_dev_unlock(d)       mutex_unlock(&d->lock)

#define to_hci_dev(d) container_of(d, struct hci_dev, dev)
#define to_hci_conn(c) container_of(c, struct hci_conn, dev)

static inline void *hci_get_drvdata(struct hci_dev *hdev)
{
        return dev_get_drvdata(&hdev->dev);
}

static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
{
        dev_set_drvdata(&hdev->dev, data);
}

struct hci_dev *hci_dev_get(int index);
struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src);

struct hci_dev *hci_alloc_dev(void);
void hci_free_dev(struct hci_dev *hdev);
int hci_register_dev(struct hci_dev *hdev);
void hci_unregister_dev(struct hci_dev *hdev);
int hci_suspend_dev(struct hci_dev *hdev);
int hci_resume_dev(struct hci_dev *hdev);
int hci_dev_open(__u16 dev);
int hci_dev_close(__u16 dev);
int hci_dev_reset(__u16 dev);
int hci_dev_reset_stat(__u16 dev);
int hci_dev_cmd(unsigned int cmd, void __user *arg);
int hci_get_dev_list(void __user *arg);
int hci_get_dev_info(void __user *arg);
int hci_get_conn_list(void __user *arg);
int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
int hci_inquiry(void __user *arg);

struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
                                           bdaddr_t *bdaddr, u8 type);
int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
void hci_bdaddr_list_clear(struct list_head *list);

struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
                                               bdaddr_t *addr, u8 addr_type);
struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
                                            bdaddr_t *addr, u8 addr_type);
int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
                        u8 auto_connect);
void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
void hci_conn_params_clear_all(struct hci_dev *hdev);
void hci_conn_params_clear_disabled(struct hci_dev *hdev);

struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
                                                  bdaddr_t *addr,
                                                  u8 addr_type);

void hci_update_background_scan(struct hci_dev *hdev);

void hci_uuids_clear(struct hci_dev *hdev);

void hci_link_keys_clear(struct hci_dev *hdev);
struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
                                  bdaddr_t *bdaddr, u8 *val, u8 type,
                                  u8 pin_len, bool *persistent);
struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
                             u8 role);
struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
                            u8 addr_type, u8 type, u8 authenticated,
                            u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                     u8 addr_type, u8 role);
int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
void hci_smp_ltks_clear(struct hci_dev *hdev);
int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);

struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                     u8 addr_type);
struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
                            u8 addr_type, u8 val[16], bdaddr_t *rpa);
void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
void hci_smp_irks_clear(struct hci_dev *hdev);

void hci_remote_oob_data_clear(struct hci_dev *hdev);
struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
                                          bdaddr_t *bdaddr);
int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
                            u8 *hash, u8 *randomizer);
int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                u8 *hash192, u8 *randomizer192,
                                u8 *hash256, u8 *randomizer256);
int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr);

void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);

int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count);

void hci_init_sysfs(struct hci_dev *hdev);
void hci_conn_init_sysfs(struct hci_conn *conn);
void hci_conn_add_sysfs(struct hci_conn *conn);
void hci_conn_del_sysfs(struct hci_conn *conn);

#define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))

/* ----- LMP capabilities ----- */
#define lmp_encrypt_capable(dev)   ((dev)->features[0][0] & LMP_ENCRYPT)
#define lmp_rswitch_capable(dev)   ((dev)->features[0][0] & LMP_RSWITCH)
#define lmp_hold_capable(dev)      ((dev)->features[0][0] & LMP_HOLD)
#define lmp_sniff_capable(dev)     ((dev)->features[0][0] & LMP_SNIFF)
#define lmp_park_capable(dev)      ((dev)->features[0][1] & LMP_PARK)
#define lmp_inq_rssi_capable(dev)  ((dev)->features[0][3] & LMP_RSSI_INQ)
#define lmp_esco_capable(dev)      ((dev)->features[0][3] & LMP_ESCO)
#define lmp_bredr_capable(dev)     (!((dev)->features[0][4] & LMP_NO_BREDR))
#define lmp_le_capable(dev)        ((dev)->features[0][4] & LMP_LE)
#define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
#define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
#define lmp_ext_inq_capable(dev)   ((dev)->features[0][6] & LMP_EXT_INQ)
#define lmp_le_br_capable(dev)     (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
#define lmp_ssp_capable(dev)       ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
#define lmp_no_flush_capable(dev)  ((dev)->features[0][6] & LMP_NO_FLUSH)
#define lmp_lsto_capable(dev)      ((dev)->features[0][7] & LMP_LSTO)
#define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
#define lmp_ext_feat_capable(dev)  ((dev)->features[0][7] & LMP_EXTFEATURES)
#define lmp_transp_capable(dev)    ((dev)->features[0][2] & LMP_TRANSPARENT)

/* ----- Extended LMP capabilities ----- */
#define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
#define lmp_csb_slave_capable(dev)  ((dev)->features[2][0] & LMP_CSB_SLAVE)
#define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
#define lmp_sync_scan_capable(dev)  ((dev)->features[2][0] & LMP_SYNC_SCAN)
#define lmp_sc_capable(dev)         ((dev)->features[2][1] & LMP_SC)
#define lmp_ping_capable(dev)       ((dev)->features[2][1] & LMP_PING)

/* ----- Host capabilities ----- */
#define lmp_host_ssp_capable(dev)  ((dev)->features[1][0] & LMP_HOST_SSP)
#define lmp_host_sc_capable(dev)   ((dev)->features[1][0] & LMP_HOST_SC)
#define lmp_host_le_capable(dev)   (!!((dev)->features[1][0] & LMP_HOST_LE))
#define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))

#define hdev_is_powered(hdev) (test_bit(HCI_UP, &hdev->flags) && \
                                !test_bit(HCI_AUTO_OFF, &hdev->dev_flags))

/* ----- HCI protocols ----- */
#define HCI_PROTO_DEFER             0x01

static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                        __u8 type, __u8 *flags)
{
        switch (type) {
        case ACL_LINK:
                return l2cap_connect_ind(hdev, bdaddr);

        case SCO_LINK:
        case ESCO_LINK:
                return sco_connect_ind(hdev, bdaddr, flags);

        default:
                BT_ERR("unknown link type %d", type);
                return -EINVAL;
        }
}

static inline void hci_proto_connect_cfm(struct hci_conn *conn, __u8 status)
{
        switch (conn->type) {
        case ACL_LINK:
        case LE_LINK:
                l2cap_connect_cfm(conn, status);
                break;

        case SCO_LINK:
        case ESCO_LINK:
                sco_connect_cfm(conn, status);
                break;

        default:
                BT_ERR("unknown link type %d", conn->type);
                break;
        }

        if (conn->connect_cfm_cb)
                conn->connect_cfm_cb(conn, status);
}

static inline int hci_proto_disconn_ind(struct hci_conn *conn)
{
        if (conn->type != ACL_LINK && conn->type != LE_LINK)
                return HCI_ERROR_REMOTE_USER_TERM;

        return l2cap_disconn_ind(conn);
}

static inline void hci_proto_disconn_cfm(struct hci_conn *conn, __u8 reason)
{
        switch (conn->type) {
        case ACL_LINK:
        case LE_LINK:
                l2cap_disconn_cfm(conn, reason);
                break;

        case SCO_LINK:
        case ESCO_LINK:
                sco_disconn_cfm(conn, reason);
                break;

        /* L2CAP would be handled for BREDR chan */
        case AMP_LINK:
                break;

        default:
                BT_ERR("unknown link type %d", conn->type);
                break;
        }

        if (conn->disconn_cfm_cb)
                conn->disconn_cfm_cb(conn, reason);
}

static inline void hci_proto_auth_cfm(struct hci_conn *conn, __u8 status)
{
        __u8 encrypt;

        if (conn->type != ACL_LINK && conn->type != LE_LINK)
                return;

        if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
                return;

        encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
        l2cap_security_cfm(conn, status, encrypt);

        if (conn->security_cfm_cb)
                conn->security_cfm_cb(conn, status);
}

static inline void hci_proto_encrypt_cfm(struct hci_conn *conn, __u8 status,
                                                                __u8 encrypt)
{
        if (conn->type != ACL_LINK && conn->type != LE_LINK)
                return;

        l2cap_security_cfm(conn, status, encrypt);

        if (conn->security_cfm_cb)
                conn->security_cfm_cb(conn, status);
}

/* ----- HCI callbacks ----- */
struct hci_cb {
        struct list_head list;

        char *name;

        void (*security_cfm)    (struct hci_conn *conn, __u8 status,
                                                                __u8 encrypt);
        void (*key_change_cfm)  (struct hci_conn *conn, __u8 status);
        void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
};

static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
{
        struct hci_cb *cb;
        __u8 encrypt;

        hci_proto_auth_cfm(conn, status);

        if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
                return;

        encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;

        read_lock(&hci_cb_list_lock);
        list_for_each_entry(cb, &hci_cb_list, list) {
                if (cb->security_cfm)
                        cb->security_cfm(conn, status, encrypt);
        }
        read_unlock(&hci_cb_list_lock);
}

static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
                                                                __u8 encrypt)
{
        struct hci_cb *cb;

        if (conn->sec_level == BT_SECURITY_SDP)
                conn->sec_level = BT_SECURITY_LOW;

        if (conn->pending_sec_level > conn->sec_level)
                conn->sec_level = conn->pending_sec_level;

        hci_proto_encrypt_cfm(conn, status, encrypt);

        read_lock(&hci_cb_list_lock);
        list_for_each_entry(cb, &hci_cb_list, list) {
                if (cb->security_cfm)
                        cb->security_cfm(conn, status, encrypt);
        }
        read_unlock(&hci_cb_list_lock);
}

static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
{
        struct hci_cb *cb;

        read_lock(&hci_cb_list_lock);
        list_for_each_entry(cb, &hci_cb_list, list) {
                if (cb->key_change_cfm)
                        cb->key_change_cfm(conn, status);
        }
        read_unlock(&hci_cb_list_lock);
}

static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
                                                                __u8 role)
{
        struct hci_cb *cb;

        read_lock(&hci_cb_list_lock);
        list_for_each_entry(cb, &hci_cb_list, list) {
                if (cb->role_switch_cfm)
                        cb->role_switch_cfm(conn, status, role);
        }
        read_unlock(&hci_cb_list_lock);
}

static inline bool eir_has_data_type(u8 *data, size_t data_len, u8 type)
{
        size_t parsed = 0;

        if (data_len < 2)
                return false;

        while (parsed < data_len - 1) {
                u8 field_len = data[0];

                if (field_len == 0)
                        break;

                parsed += field_len + 1;

                if (parsed > data_len)
                        break;

                if (data[1] == type)
                        return true;

                data += field_len + 1;
        }

        return false;
}

static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
{
        if (addr_type != ADDR_LE_DEV_RANDOM)
                return false;

        if ((bdaddr->b[5] & 0xc0) == 0x40)
               return true;

        return false;
}

static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
{
        if (addr_type == ADDR_LE_DEV_PUBLIC)
                return true;

        /* Check for Random Static address type */
        if ((addr->b[5] & 0xc0) == 0xc0)
                return true;

        return false;
}

static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
                                          bdaddr_t *bdaddr, u8 addr_type)
{
        if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
                return NULL;

        return hci_find_irk_by_rpa(hdev, bdaddr);
}

static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
                                        u16 to_multiplier)
{
        u16 max_latency;

        if (min > max || min < 6 || max > 3200)
                return -EINVAL;

        if (to_multiplier < 10 || to_multiplier > 3200)
                return -EINVAL;

        if (max >= to_multiplier * 8)
                return -EINVAL;

        max_latency = (to_multiplier * 8 / max) - 1;
        if (latency > 499 || latency > max_latency)
                return -EINVAL;

        return 0;
}

int hci_register_cb(struct hci_cb *hcb);
int hci_unregister_cb(struct hci_cb *hcb);

struct hci_request {
        struct hci_dev          *hdev;
        struct sk_buff_head     cmd_q;

        /* If something goes wrong when building the HCI request, the error
         * value is stored in this field.
         */
        int                     err;
};

void hci_req_init(struct hci_request *req, struct hci_dev *hdev);
int hci_req_run(struct hci_request *req, hci_req_complete_t complete);
void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
                 const void *param);
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
                    const void *param, u8 event);
void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status);
bool hci_req_pending(struct hci_dev *hdev);

void hci_req_add_le_scan_disable(struct hci_request *req);
void hci_req_add_le_passive_scan(struct hci_request *req);

void hci_update_page_scan(struct hci_dev *hdev, struct hci_request *req);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
                               const void *param, u32 timeout);
struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
                                  const void *param, u8 event, u32 timeout);

int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
                 const void *param);
void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);

void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);

/* ----- HCI Sockets ----- */
void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
void hci_send_to_control(struct sk_buff *skb, struct sock *skip_sk);
void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);

void hci_sock_dev_event(struct hci_dev *hdev, int event);

/* Management interface */
#define DISCOV_TYPE_BREDR               (BIT(BDADDR_BREDR))
#define DISCOV_TYPE_LE                  (BIT(BDADDR_LE_PUBLIC) | \
                                         BIT(BDADDR_LE_RANDOM))
#define DISCOV_TYPE_INTERLEAVED         (BIT(BDADDR_BREDR) | \
                                         BIT(BDADDR_LE_PUBLIC) | \
                                         BIT(BDADDR_LE_RANDOM))

/* These LE scan and inquiry parameters were chosen according to LE General
 * Discovery Procedure specification.
 */
#define DISCOV_LE_SCAN_WIN              0x12
#define DISCOV_LE_SCAN_INT              0x12
#define DISCOV_LE_TIMEOUT               10240   /* msec */
#define DISCOV_INTERLEAVED_TIMEOUT      5120    /* msec */
#define DISCOV_INTERLEAVED_INQUIRY_LEN  0x04
#define DISCOV_BREDR_INQUIRY_LEN        0x08

int mgmt_control(struct sock *sk, struct msghdr *msg, size_t len);
int mgmt_new_settings(struct hci_dev *hdev);
void mgmt_index_added(struct hci_dev *hdev);
void mgmt_index_removed(struct hci_dev *hdev);
void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
int mgmt_powered(struct hci_dev *hdev, u8 powered);
int mgmt_update_adv_data(struct hci_dev *hdev);
void mgmt_discoverable_timeout(struct hci_dev *hdev);
void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
                       bool persistent);
void mgmt_device_connected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
                           u8 addr_type, u32 flags, u8 *name, u8 name_len,
                           u8 *dev_class);
void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
                              u8 link_type, u8 addr_type, u8 reason,
                              bool mgmt_connected);
void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
                            u8 link_type, u8 addr_type, u8 status);
void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
                         u8 addr_type, u8 status);
void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                  u8 status);
void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                      u8 status);
int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
                              u8 link_type, u8 addr_type, u32 value,
                              u8 confirm_hint);
int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                     u8 link_type, u8 addr_type, u8 status);
int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                         u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
                              u8 link_type, u8 addr_type);
int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                     u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
                                         u8 link_type, u8 addr_type, u8 status);
int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
                             u8 link_type, u8 addr_type, u32 passkey,
                             u8 entered);
void mgmt_auth_failed(struct hci_conn *conn, u8 status);
void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
void mgmt_sc_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
                                    u8 status);
void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
void mgmt_read_local_oob_data_complete(struct hci_dev *hdev, u8 *hash192,
                                       u8 *randomizer192, u8 *hash256,
                                       u8 *randomizer256, u8 status);
void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
                       u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
                       u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
                      u8 addr_type, s8 rssi, u8 *name, u8 name_len);
void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
bool mgmt_powering_down(struct hci_dev *hdev);
void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk);
void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
                   bool persistent);
void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
                         u8 bdaddr_type, u8 store_hint, u16 min_interval,
                         u16 max_interval, u16 latency, u16 timeout);
void mgmt_reenable_advertising(struct hci_dev *hdev);
void mgmt_smp_complete(struct hci_conn *conn, bool complete);

u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
                      u16 to_multiplier);
void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
                                                        __u8 ltk[16]);

int hci_update_random_address(struct hci_request *req, bool require_privacy,
                              u8 *own_addr_type);
void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
                               u8 *bdaddr_type);

#define SCO_AIRMODE_MASK       0x0003
#define SCO_AIRMODE_CVSD       0x0000
#define SCO_AIRMODE_TRANSP     0x0003

#endif /* __HCI_CORE_H */

/* [<][>][^][v][top][bottom][index][help] */