root/include/linux/rcupdate.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. rcutorture_get_gp_data
  2. rcutorture_record_test_transition
  3. rcutorture_record_progress
  4. __rcu_read_lock
  5. __rcu_read_unlock
  6. synchronize_rcu
  7. rcu_preempt_depth
  8. rcu_sysrq_start
  9. rcu_sysrq_end
  10. rcu_user_enter
  11. rcu_user_exit
  12. rcu_user_hooks_switch
  13. rcu_init_nohz
  14. init_rcu_head
  15. destroy_rcu_head
  16. init_rcu_head_on_stack
  17. destroy_rcu_head_on_stack
  18. rcu_lockdep_current_cpu_online
  19. rcu_lock_acquire
  20. rcu_lock_release
  21. rcu_read_lock_sched_held
  22. rcu_read_lock_sched_held
  23. rcu_read_lock_held
  24. rcu_read_lock_bh_held
  25. rcu_read_lock_sched_held
  26. rcu_read_lock_sched_held
  27. rcu_preempt_sleep_check
  28. rcu_preempt_sleep_check
  29. rcu_read_lock
  30. rcu_read_unlock
  31. rcu_read_lock_bh
  32. rcu_read_unlock_bh
  33. rcu_read_lock_sched
  34. rcu_read_lock_sched_notrace
  35. rcu_read_unlock_sched
  36. rcu_read_unlock_sched_notrace
  37. rcu_needs_cpu
  38. rcu_is_nocb_cpu
  39. rcu_is_nocb_cpu
  40. rcu_sys_is_idle
  41. rcu_sysidle_force_exit

/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 * Copyright IBM Corporation, 2001
 *
 * Author: Dipankar Sarma <dipankar@in.ibm.com>
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 * Papers:
 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 *              http://lse.sourceforge.net/locking/rcupdate.html
 *
 */

#ifndef __LINUX_RCUPDATE_H
#define __LINUX_RCUPDATE_H

#include <linux/types.h>
#include <linux/cache.h>
#include <linux/spinlock.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/seqlock.h>
#include <linux/lockdep.h>
#include <linux/completion.h>
#include <linux/debugobjects.h>
#include <linux/bug.h>
#include <linux/compiler.h>
#include <asm/barrier.h>

extern int rcu_expedited; /* for sysctl */

enum rcutorture_type {
        RCU_FLAVOR,
        RCU_BH_FLAVOR,
        RCU_SCHED_FLAVOR,
        RCU_TASKS_FLAVOR,
        SRCU_FLAVOR,
        INVALID_RCU_FLAVOR
};

#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
                            unsigned long *gpnum, unsigned long *completed);
void rcutorture_record_test_transition(void);
void rcutorture_record_progress(unsigned long vernum);
void do_trace_rcu_torture_read(const char *rcutorturename,
                               struct rcu_head *rhp,
                               unsigned long secs,
                               unsigned long c_old,
                               unsigned long c);
#else
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
                                          int *flags,
                                          unsigned long *gpnum,
                                          unsigned long *completed)
{
        *flags = 0;
        *gpnum = 0;
        *completed = 0;
}
static inline void rcutorture_record_test_transition(void)
{
}
static inline void rcutorture_record_progress(unsigned long vernum)
{
}
#ifdef CONFIG_RCU_TRACE
void do_trace_rcu_torture_read(const char *rcutorturename,
                               struct rcu_head *rhp,
                               unsigned long secs,
                               unsigned long c_old,
                               unsigned long c);
#else
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
        do { } while (0)
#endif
#endif

#define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
#define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
#define ulong2long(a)           (*(long *)(&(a)))

/* Exported common interfaces */

#ifdef CONFIG_PREEMPT_RCU

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.  RCU read-side critical
 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
 * and may be nested.
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
 */
void call_rcu(struct rcu_head *head,
              void (*func)(struct rcu_head *head));

#else /* #ifdef CONFIG_PREEMPT_RCU */

/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define call_rcu        call_rcu_sched

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/**
 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_bh() assumes
 * that the read-side critical sections end on completion of a softirq
 * handler. This means that read-side critical sections in process
 * context must not be interrupted by softirqs. This interface is to be
 * used when most of the read-side critical sections are in softirq context.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
 *  OR
 *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
 *  These may be nested.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_bh(struct rcu_head *head,
                 void (*func)(struct rcu_head *head));

/**
 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_sched() assumes
 * that the read-side critical sections end on enabling of preemption
 * or on voluntary preemption.
 * RCU read-side critical sections are delimited by :
 *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
 *  OR
 *  anything that disables preemption.
 *  These may be nested.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_sched(struct rcu_head *head,
                    void (*func)(struct rcu_head *rcu));

void synchronize_sched(void);

/**
 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all currently executing RCU
 * read-side critical sections have completed. call_rcu_tasks() assumes
 * that the read-side critical sections end at a voluntary context
 * switch (not a preemption!), entry into idle, or transition to usermode
 * execution.  As such, there are no read-side primitives analogous to
 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
 * to determine that all tasks have passed through a safe state, not so
 * much for data-strcuture synchronization.
 *
 * See the description of call_rcu() for more detailed information on
 * memory ordering guarantees.
 */
void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head));
void synchronize_rcu_tasks(void);
void rcu_barrier_tasks(void);

#ifdef CONFIG_PREEMPT_RCU

void __rcu_read_lock(void);
void __rcu_read_unlock(void);
void rcu_read_unlock_special(struct task_struct *t);
void synchronize_rcu(void);

/*
 * Defined as a macro as it is a very low level header included from
 * areas that don't even know about current.  This gives the rcu_read_lock()
 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
 */
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)

#else /* #ifdef CONFIG_PREEMPT_RCU */

static inline void __rcu_read_lock(void)
{
        preempt_disable();
}

static inline void __rcu_read_unlock(void)
{
        preempt_enable();
}

static inline void synchronize_rcu(void)
{
        synchronize_sched();
}

static inline int rcu_preempt_depth(void)
{
        return 0;
}

#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

/* Internal to kernel */
void rcu_init(void);
void rcu_sched_qs(void);
void rcu_bh_qs(void);
void rcu_check_callbacks(int cpu, int user);
struct notifier_block;
void rcu_idle_enter(void);
void rcu_idle_exit(void);
void rcu_irq_enter(void);
void rcu_irq_exit(void);

#ifdef CONFIG_RCU_STALL_COMMON
void rcu_sysrq_start(void);
void rcu_sysrq_end(void);
#else /* #ifdef CONFIG_RCU_STALL_COMMON */
static inline void rcu_sysrq_start(void)
{
}
static inline void rcu_sysrq_end(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */

#ifdef CONFIG_RCU_USER_QS
void rcu_user_enter(void);
void rcu_user_exit(void);
#else
static inline void rcu_user_enter(void) { }
static inline void rcu_user_exit(void) { }
static inline void rcu_user_hooks_switch(struct task_struct *prev,
                                         struct task_struct *next) { }
#endif /* CONFIG_RCU_USER_QS */

#ifdef CONFIG_RCU_NOCB_CPU
void rcu_init_nohz(void);
#else /* #ifdef CONFIG_RCU_NOCB_CPU */
static inline void rcu_init_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */

/**
 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 * @a: Code that RCU needs to pay attention to.
 *
 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
 * in the inner idle loop, that is, between the rcu_idle_enter() and
 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
 * critical sections.  However, things like powertop need tracepoints
 * in the inner idle loop.
 *
 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 * will tell RCU that it needs to pay attending, invoke its argument
 * (in this example, a call to the do_something_with_RCU() function),
 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
 * quite limited.  If deeper nesting is required, it will be necessary
 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
 */
#define RCU_NONIDLE(a) \
        do { \
                rcu_irq_enter(); \
                do { a; } while (0); \
                rcu_irq_exit(); \
        } while (0)

/*
 * Note a voluntary context switch for RCU-tasks benefit.  This is a
 * macro rather than an inline function to avoid #include hell.
 */
#ifdef CONFIG_TASKS_RCU
#define TASKS_RCU(x) x
extern struct srcu_struct tasks_rcu_exit_srcu;
#define rcu_note_voluntary_context_switch(t) \
        do { \
                if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \
                        ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \
        } while (0)
#else /* #ifdef CONFIG_TASKS_RCU */
#define TASKS_RCU(x) do { } while (0)
#define rcu_note_voluntary_context_switch(t)    do { } while (0)
#endif /* #else #ifdef CONFIG_TASKS_RCU */

/**
 * cond_resched_rcu_qs - Report potential quiescent states to RCU
 *
 * This macro resembles cond_resched(), except that it is defined to
 * report potential quiescent states to RCU-tasks even if the cond_resched()
 * machinery were to be shut off, as some advocate for PREEMPT kernels.
 */
#define cond_resched_rcu_qs() \
do { \
        rcu_note_voluntary_context_switch(current); \
        cond_resched(); \
} while (0)

#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
bool __rcu_is_watching(void);
#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */

/*
 * Infrastructure to implement the synchronize_() primitives in
 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 */

typedef void call_rcu_func_t(struct rcu_head *head,
                             void (*func)(struct rcu_head *head));
void wait_rcu_gp(call_rcu_func_t crf);

#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
#include <linux/rcutree.h>
#elif defined(CONFIG_TINY_RCU)
#include <linux/rcutiny.h>
#else
#error "Unknown RCU implementation specified to kernel configuration"
#endif

/*
 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
 * initialization and destruction of rcu_head on the stack. rcu_head structures
 * allocated dynamically in the heap or defined statically don't need any
 * initialization.
 */
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
void init_rcu_head(struct rcu_head *head);
void destroy_rcu_head(struct rcu_head *head);
void init_rcu_head_on_stack(struct rcu_head *head);
void destroy_rcu_head_on_stack(struct rcu_head *head);
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
static inline void init_rcu_head(struct rcu_head *head)
{
}

static inline void destroy_rcu_head(struct rcu_head *head)
{
}

static inline void init_rcu_head_on_stack(struct rcu_head *head)
{
}

static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
{
}
#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */

#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
bool rcu_lockdep_current_cpu_online(void);
#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
static inline bool rcu_lockdep_current_cpu_online(void)
{
        return true;
}
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */

#ifdef CONFIG_DEBUG_LOCK_ALLOC

static inline void rcu_lock_acquire(struct lockdep_map *map)
{
        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
}

static inline void rcu_lock_release(struct lockdep_map *map)
{
        lock_release(map, 1, _THIS_IP_);
}

extern struct lockdep_map rcu_lock_map;
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
extern struct lockdep_map rcu_callback_map;
int debug_lockdep_rcu_enabled(void);

int rcu_read_lock_held(void);
int rcu_read_lock_bh_held(void);

/**
 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
 *
 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
 * RCU-sched read-side critical section.  In absence of
 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
 * critical section unless it can prove otherwise.  Note that disabling
 * of preemption (including disabling irqs) counts as an RCU-sched
 * read-side critical section.  This is useful for debug checks in functions
 * that required that they be called within an RCU-sched read-side
 * critical section.
 *
 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
 * and while lockdep is disabled.
 *
 * Note that if the CPU is in the idle loop from an RCU point of
 * view (ie: that we are in the section between rcu_idle_enter() and
 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
 * did an rcu_read_lock().  The reason for this is that RCU ignores CPUs
 * that are in such a section, considering these as in extended quiescent
 * state, so such a CPU is effectively never in an RCU read-side critical
 * section regardless of what RCU primitives it invokes.  This state of
 * affairs is required --- we need to keep an RCU-free window in idle
 * where the CPU may possibly enter into low power mode. This way we can
 * notice an extended quiescent state to other CPUs that started a grace
 * period. Otherwise we would delay any grace period as long as we run in
 * the idle task.
 *
 * Similarly, we avoid claiming an SRCU read lock held if the current
 * CPU is offline.
 */
#ifdef CONFIG_PREEMPT_COUNT
static inline int rcu_read_lock_sched_held(void)
{
        int lockdep_opinion = 0;

        if (!debug_lockdep_rcu_enabled())
                return 1;
        if (!rcu_is_watching())
                return 0;
        if (!rcu_lockdep_current_cpu_online())
                return 0;
        if (debug_locks)
                lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
        return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
}
#else /* #ifdef CONFIG_PREEMPT_COUNT */
static inline int rcu_read_lock_sched_held(void)
{
        return 1;
}
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */

#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */

# define rcu_lock_acquire(a)            do { } while (0)
# define rcu_lock_release(a)            do { } while (0)

static inline int rcu_read_lock_held(void)
{
        return 1;
}

static inline int rcu_read_lock_bh_held(void)
{
        return 1;
}

#ifdef CONFIG_PREEMPT_COUNT
static inline int rcu_read_lock_sched_held(void)
{
        return preempt_count() != 0 || irqs_disabled();
}
#else /* #ifdef CONFIG_PREEMPT_COUNT */
static inline int rcu_read_lock_sched_held(void)
{
        return 1;
}
#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */

#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */

#ifdef CONFIG_PROVE_RCU

/**
 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
 * @c: condition to check
 * @s: informative message
 */
#define rcu_lockdep_assert(c, s)                                        \
        do {                                                            \
                static bool __section(.data.unlikely) __warned;         \
                if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
                        __warned = true;                                \
                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
                }                                                       \
        } while (0)

#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
static inline void rcu_preempt_sleep_check(void)
{
        rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
                           "Illegal context switch in RCU read-side critical section");
}
#else /* #ifdef CONFIG_PROVE_RCU */
static inline void rcu_preempt_sleep_check(void)
{
}
#endif /* #else #ifdef CONFIG_PROVE_RCU */

#define rcu_sleep_check()                                               \
        do {                                                            \
                rcu_preempt_sleep_check();                              \
                rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),     \
                                   "Illegal context switch in RCU-bh read-side critical section"); \
                rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),  \
                                   "Illegal context switch in RCU-sched read-side critical section"); \
        } while (0)

#else /* #ifdef CONFIG_PROVE_RCU */

#define rcu_lockdep_assert(c, s) do { } while (0)
#define rcu_sleep_check() do { } while (0)

#endif /* #else #ifdef CONFIG_PROVE_RCU */

/*
 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 * and rcu_assign_pointer().  Some of these could be folded into their
 * callers, but they are left separate in order to ease introduction of
 * multiple flavors of pointers to match the multiple flavors of RCU
 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
 * the future.
 */

#ifdef __CHECKER__
#define rcu_dereference_sparse(p, space) \
        ((void)(((typeof(*p) space *)p) == p))
#else /* #ifdef __CHECKER__ */
#define rcu_dereference_sparse(p, space)
#endif /* #else #ifdef __CHECKER__ */

#define __rcu_access_pointer(p, space) \
({ \
        typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
        rcu_dereference_sparse(p, space); \
        ((typeof(*p) __force __kernel *)(_________p1)); \
})
#define __rcu_dereference_check(p, c, space) \
({ \
        typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \
        rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \
        rcu_dereference_sparse(p, space); \
        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
        ((typeof(*p) __force __kernel *)(_________p1)); \
})
#define __rcu_dereference_protected(p, c, space) \
({ \
        rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \
        rcu_dereference_sparse(p, space); \
        ((typeof(*p) __force __kernel *)(p)); \
})

#define __rcu_access_index(p, space) \
({ \
        typeof(p) _________p1 = ACCESS_ONCE(p); \
        rcu_dereference_sparse(p, space); \
        (_________p1); \
})
#define __rcu_dereference_index_check(p, c) \
({ \
        typeof(p) _________p1 = ACCESS_ONCE(p); \
        rcu_lockdep_assert(c, \
                           "suspicious rcu_dereference_index_check() usage"); \
        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
        (_________p1); \
})

/**
 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 * @v: The value to statically initialize with.
 */
#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)

/**
 * lockless_dereference() - safely load a pointer for later dereference
 * @p: The pointer to load
 *
 * Similar to rcu_dereference(), but for situations where the pointed-to
 * object's lifetime is managed by something other than RCU.  That
 * "something other" might be reference counting or simple immortality.
 */
#define lockless_dereference(p) \
({ \
        typeof(p) _________p1 = ACCESS_ONCE(p); \
        smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
        (_________p1); \
})

/**
 * rcu_assign_pointer() - assign to RCU-protected pointer
 * @p: pointer to assign to
 * @v: value to assign (publish)
 *
 * Assigns the specified value to the specified RCU-protected
 * pointer, ensuring that any concurrent RCU readers will see
 * any prior initialization.
 *
 * Inserts memory barriers on architectures that require them
 * (which is most of them), and also prevents the compiler from
 * reordering the code that initializes the structure after the pointer
 * assignment.  More importantly, this call documents which pointers
 * will be dereferenced by RCU read-side code.
 *
 * In some special cases, you may use RCU_INIT_POINTER() instead
 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 * to the fact that it does not constrain either the CPU or the compiler.
 * That said, using RCU_INIT_POINTER() when you should have used
 * rcu_assign_pointer() is a very bad thing that results in
 * impossible-to-diagnose memory corruption.  So please be careful.
 * See the RCU_INIT_POINTER() comment header for details.
 *
 * Note that rcu_assign_pointer() evaluates each of its arguments only
 * once, appearances notwithstanding.  One of the "extra" evaluations
 * is in typeof() and the other visible only to sparse (__CHECKER__),
 * neither of which actually execute the argument.  As with most cpp
 * macros, this execute-arguments-only-once property is important, so
 * please be careful when making changes to rcu_assign_pointer() and the
 * other macros that it invokes.
 */
#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))

/**
 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 * @p: The pointer to read
 *
 * Return the value of the specified RCU-protected pointer, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this pointer is accessed, but the pointer is not
 * dereferenced, for example, when testing an RCU-protected pointer against
 * NULL.  Although rcu_access_pointer() may also be used in cases where
 * update-side locks prevent the value of the pointer from changing, you
 * should instead use rcu_dereference_protected() for this use case.
 *
 * It is also permissible to use rcu_access_pointer() when read-side
 * access to the pointer was removed at least one grace period ago, as
 * is the case in the context of the RCU callback that is freeing up
 * the data, or after a synchronize_rcu() returns.  This can be useful
 * when tearing down multi-linked structures after a grace period
 * has elapsed.
 */
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)

/**
 * rcu_dereference_check() - rcu_dereference with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * Do an rcu_dereference(), but check that the conditions under which the
 * dereference will take place are correct.  Typically the conditions
 * indicate the various locking conditions that should be held at that
 * point.  The check should return true if the conditions are satisfied.
 * An implicit check for being in an RCU read-side critical section
 * (rcu_read_lock()) is included.
 *
 * For example:
 *
 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 *
 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 * if either rcu_read_lock() is held, or that the lock required to replace
 * the bar struct at foo->bar is held.
 *
 * Note that the list of conditions may also include indications of when a lock
 * need not be held, for example during initialisation or destruction of the
 * target struct:
 *
 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 *                                            atomic_read(&foo->usage) == 0);
 *
 * Inserts memory barriers on architectures that require them
 * (currently only the Alpha), prevents the compiler from refetching
 * (and from merging fetches), and, more importantly, documents exactly
 * which pointers are protected by RCU and checks that the pointer is
 * annotated as __rcu.
 */
#define rcu_dereference_check(p, c) \
        __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)

/**
 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-bh counterpart to rcu_dereference_check().
 */
#define rcu_dereference_bh_check(p, c) \
        __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)

/**
 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * This is the RCU-sched counterpart to rcu_dereference_check().
 */
#define rcu_dereference_sched_check(p, c) \
        __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
                                __rcu)

#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/

/*
 * The tracing infrastructure traces RCU (we want that), but unfortunately
 * some of the RCU checks causes tracing to lock up the system.
 *
 * The tracing version of rcu_dereference_raw() must not call
 * rcu_read_lock_held().
 */
#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)

/**
 * rcu_access_index() - fetch RCU index with no dereferencing
 * @p: The index to read
 *
 * Return the value of the specified RCU-protected index, but omit the
 * smp_read_barrier_depends() and keep the ACCESS_ONCE().  This is useful
 * when the value of this index is accessed, but the index is not
 * dereferenced, for example, when testing an RCU-protected index against
 * -1.  Although rcu_access_index() may also be used in cases where
 * update-side locks prevent the value of the index from changing, you
 * should instead use rcu_dereference_index_protected() for this use case.
 */
#define rcu_access_index(p) __rcu_access_index((p), __rcu)

/**
 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * Similar to rcu_dereference_check(), but omits the sparse checking.
 * This allows rcu_dereference_index_check() to be used on integers,
 * which can then be used as array indices.  Attempting to use
 * rcu_dereference_check() on an integer will give compiler warnings
 * because the sparse address-space mechanism relies on dereferencing
 * the RCU-protected pointer.  Dereferencing integers is not something
 * that even gcc will put up with.
 *
 * Note that this function does not implicitly check for RCU read-side
 * critical sections.  If this function gains lots of uses, it might
 * make sense to provide versions for each flavor of RCU, but it does
 * not make sense as of early 2010.
 */
#define rcu_dereference_index_check(p, c) \
        __rcu_dereference_index_check((p), (c))

/**
 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 * @p: The pointer to read, prior to dereferencing
 * @c: The conditions under which the dereference will take place
 *
 * Return the value of the specified RCU-protected pointer, but omit
 * both the smp_read_barrier_depends() and the ACCESS_ONCE().  This
 * is useful in cases where update-side locks prevent the value of the
 * pointer from changing.  Please note that this primitive does -not-
 * prevent the compiler from repeating this reference or combining it
 * with other references, so it should not be used without protection
 * of appropriate locks.
 *
 * This function is only for update-side use.  Using this function
 * when protected only by rcu_read_lock() will result in infrequent
 * but very ugly failures.
 */
#define rcu_dereference_protected(p, c) \
        __rcu_dereference_protected((p), (c), __rcu)


/**
 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * This is a simple wrapper around rcu_dereference_check().
 */
#define rcu_dereference(p) rcu_dereference_check(p, 0)

/**
 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)

/**
 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 * @p: The pointer to read, prior to dereferencing
 *
 * Makes rcu_dereference_check() do the dirty work.
 */
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)

/**
 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 *
 * When synchronize_rcu() is invoked on one CPU while other CPUs
 * are within RCU read-side critical sections, then the
 * synchronize_rcu() is guaranteed to block until after all the other
 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 * on one CPU while other CPUs are within RCU read-side critical
 * sections, invocation of the corresponding RCU callback is deferred
 * until after the all the other CPUs exit their critical sections.
 *
 * Note, however, that RCU callbacks are permitted to run concurrently
 * with new RCU read-side critical sections.  One way that this can happen
 * is via the following sequence of events: (1) CPU 0 enters an RCU
 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 * callback is invoked.  This is legal, because the RCU read-side critical
 * section that was running concurrently with the call_rcu() (and which
 * therefore might be referencing something that the corresponding RCU
 * callback would free up) has completed before the corresponding
 * RCU callback is invoked.
 *
 * RCU read-side critical sections may be nested.  Any deferred actions
 * will be deferred until the outermost RCU read-side critical section
 * completes.
 *
 * You can avoid reading and understanding the next paragraph by
 * following this rule: don't put anything in an rcu_read_lock() RCU
 * read-side critical section that would block in a !PREEMPT kernel.
 * But if you want the full story, read on!
 *
 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
 * it is illegal to block while in an RCU read-side critical section.
 * In preemptible RCU implementations (TREE_PREEMPT_RCU) in CONFIG_PREEMPT
 * kernel builds, RCU read-side critical sections may be preempted,
 * but explicit blocking is illegal.  Finally, in preemptible RCU
 * implementations in real-time (with -rt patchset) kernel builds, RCU
 * read-side critical sections may be preempted and they may also block, but
 * only when acquiring spinlocks that are subject to priority inheritance.
 */
static inline void rcu_read_lock(void)
{
        __rcu_read_lock();
        __acquire(RCU);
        rcu_lock_acquire(&rcu_lock_map);
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_lock() used illegally while idle");
}

/*
 * So where is rcu_write_lock()?  It does not exist, as there is no
 * way for writers to lock out RCU readers.  This is a feature, not
 * a bug -- this property is what provides RCU's performance benefits.
 * Of course, writers must coordinate with each other.  The normal
 * spinlock primitives work well for this, but any other technique may be
 * used as well.  RCU does not care how the writers keep out of each
 * others' way, as long as they do so.
 */

/**
 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 *
 * In most situations, rcu_read_unlock() is immune from deadlock.
 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 * is responsible for deboosting, which it does via rt_mutex_unlock().
 * Unfortunately, this function acquires the scheduler's runqueue and
 * priority-inheritance spinlocks.  This means that deadlock could result
 * if the caller of rcu_read_unlock() already holds one of these locks or
 * any lock that is ever acquired while holding them.
 *
 * That said, RCU readers are never priority boosted unless they were
 * preempted.  Therefore, one way to avoid deadlock is to make sure
 * that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with one of
 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 * a number of ways, for example, by invoking preempt_disable() before
 * critical section's outermost rcu_read_lock().
 *
 * Given that the set of locks acquired by rt_mutex_unlock() might change
 * at any time, a somewhat more future-proofed approach is to make sure
 * that that preemption never happens within any RCU read-side critical
 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 * This approach relies on the fact that rt_mutex_unlock() currently only
 * acquires irq-disabled locks.
 *
 * The second of these two approaches is best in most situations,
 * however, the first approach can also be useful, at least to those
 * developers willing to keep abreast of the set of locks acquired by
 * rt_mutex_unlock().
 *
 * See rcu_read_lock() for more information.
 */
static inline void rcu_read_unlock(void)
{
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_unlock() used illegally while idle");
        rcu_lock_release(&rcu_lock_map);
        __release(RCU);
        __rcu_read_unlock();
}

/**
 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
 * softirq handler to be a quiescent state, a process in RCU read-side
 * critical section must be protected by disabling softirqs. Read-side
 * critical sections in interrupt context can use just rcu_read_lock(),
 * though this should at least be commented to avoid confusing people
 * reading the code.
 *
 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 * was invoked from some other task.
 */
static inline void rcu_read_lock_bh(void)
{
        local_bh_disable();
        __acquire(RCU_BH);
        rcu_lock_acquire(&rcu_bh_lock_map);
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_lock_bh() used illegally while idle");
}

/*
 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
 *
 * See rcu_read_lock_bh() for more information.
 */
static inline void rcu_read_unlock_bh(void)
{
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_unlock_bh() used illegally while idle");
        rcu_lock_release(&rcu_bh_lock_map);
        __release(RCU_BH);
        local_bh_enable();
}

/**
 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 *
 * This is equivalent of rcu_read_lock(), but to be used when updates
 * are being done using call_rcu_sched() or synchronize_rcu_sched().
 * Read-side critical sections can also be introduced by anything that
 * disables preemption, including local_irq_disable() and friends.
 *
 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 * must occur in the same context, for example, it is illegal to invoke
 * rcu_read_unlock_sched() from process context if the matching
 * rcu_read_lock_sched() was invoked from an NMI handler.
 */
static inline void rcu_read_lock_sched(void)
{
        preempt_disable();
        __acquire(RCU_SCHED);
        rcu_lock_acquire(&rcu_sched_lock_map);
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_lock_sched() used illegally while idle");
}

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
static inline notrace void rcu_read_lock_sched_notrace(void)
{
        preempt_disable_notrace();
        __acquire(RCU_SCHED);
}

/*
 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
 *
 * See rcu_read_lock_sched for more information.
 */
static inline void rcu_read_unlock_sched(void)
{
        rcu_lockdep_assert(rcu_is_watching(),
                           "rcu_read_unlock_sched() used illegally while idle");
        rcu_lock_release(&rcu_sched_lock_map);
        __release(RCU_SCHED);
        preempt_enable();
}

/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
static inline notrace void rcu_read_unlock_sched_notrace(void)
{
        __release(RCU_SCHED);
        preempt_enable_notrace();
}

/**
 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 *
 * Initialize an RCU-protected pointer in special cases where readers
 * do not need ordering constraints on the CPU or the compiler.  These
 * special cases are:
 *
 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
 * 2.   The caller has taken whatever steps are required to prevent
 *      RCU readers from concurrently accessing this pointer -or-
 * 3.   The referenced data structure has already been exposed to
 *      readers either at compile time or via rcu_assign_pointer() -and-
 *      a.      You have not made -any- reader-visible changes to
 *              this structure since then -or-
 *      b.      It is OK for readers accessing this structure from its
 *              new location to see the old state of the structure.  (For
 *              example, the changes were to statistical counters or to
 *              other state where exact synchronization is not required.)
 *
 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 * result in impossible-to-diagnose memory corruption.  As in the structures
 * will look OK in crash dumps, but any concurrent RCU readers might
 * see pre-initialized values of the referenced data structure.  So
 * please be very careful how you use RCU_INIT_POINTER()!!!
 *
 * If you are creating an RCU-protected linked structure that is accessed
 * by a single external-to-structure RCU-protected pointer, then you may
 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 * pointers, but you must use rcu_assign_pointer() to initialize the
 * external-to-structure pointer -after- you have completely initialized
 * the reader-accessible portions of the linked structure.
 *
 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 * ordering guarantees for either the CPU or the compiler.
 */
#define RCU_INIT_POINTER(p, v) \
        do { \
                p = RCU_INITIALIZER(v); \
        } while (0)

/**
 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 *
 * GCC-style initialization for an RCU-protected pointer in a structure field.
 */
#define RCU_POINTER_INITIALIZER(p, v) \
                .p = RCU_INITIALIZER(v)

/*
 * Does the specified offset indicate that the corresponding rcu_head
 * structure can be handled by kfree_rcu()?
 */
#define __is_kfree_rcu_offset(offset) ((offset) < 4096)

/*
 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 */
#define __kfree_rcu(head, offset) \
        do { \
                BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
                kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
        } while (0)

/**
 * kfree_rcu() - kfree an object after a grace period.
 * @ptr:        pointer to kfree
 * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
 *
 * Many rcu callbacks functions just call kfree() on the base structure.
 * These functions are trivial, but their size adds up, and furthermore
 * when they are used in a kernel module, that module must invoke the
 * high-latency rcu_barrier() function at module-unload time.
 *
 * The kfree_rcu() function handles this issue.  Rather than encoding a
 * function address in the embedded rcu_head structure, kfree_rcu() instead
 * encodes the offset of the rcu_head structure within the base structure.
 * Because the functions are not allowed in the low-order 4096 bytes of
 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 * If the offset is larger than 4095 bytes, a compile-time error will
 * be generated in __kfree_rcu().  If this error is triggered, you can
 * either fall back to use of call_rcu() or rearrange the structure to
 * position the rcu_head structure into the first 4096 bytes.
 *
 * Note that the allowable offset might decrease in the future, for example,
 * to allow something like kmem_cache_free_rcu().
 *
 * The BUILD_BUG_ON check must not involve any function calls, hence the
 * checks are done in macros here.
 */
#define kfree_rcu(ptr, rcu_head)                                        \
        __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))

#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
{
        *delta_jiffies = ULONG_MAX;
        return 0;
}
#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */

#if defined(CONFIG_RCU_NOCB_CPU_ALL)
static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
#elif defined(CONFIG_RCU_NOCB_CPU)
bool rcu_is_nocb_cpu(int cpu);
#else
static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
#endif


/* Only for use by adaptive-ticks code. */
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
bool rcu_sys_is_idle(void);
void rcu_sysidle_force_exit(void);
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

static inline bool rcu_sys_is_idle(void)
{
        return false;
}

static inline void rcu_sysidle_force_exit(void)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */


#endif /* __LINUX_RCUPDATE_H */

/* [<][>][^][v][top][bottom][index][help] */