root/include/linux/clocksource.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. cyclecounter_cyc2ns
  2. clocksource_khz2mult
  3. clocksource_hz2mult
  4. clocksource_cyc2ns
  5. clocksource_register_hz
  6. clocksource_register_khz
  7. __clocksource_updatefreq_hz
  8. __clocksource_updatefreq_khz
  9. clocksource_of_init

/*  linux/include/linux/clocksource.h
 *
 *  This file contains the structure definitions for clocksources.
 *
 *  If you are not a clocksource, or timekeeping code, you should
 *  not be including this file!
 */
#ifndef _LINUX_CLOCKSOURCE_H
#define _LINUX_CLOCKSOURCE_H

#include <linux/types.h>
#include <linux/timex.h>
#include <linux/time.h>
#include <linux/list.h>
#include <linux/cache.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <asm/div64.h>
#include <asm/io.h>

/* clocksource cycle base type */
typedef u64 cycle_t;
struct clocksource;
struct module;

#ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
#include <asm/clocksource.h>
#endif

/**
 * struct cyclecounter - hardware abstraction for a free running counter
 *      Provides completely state-free accessors to the underlying hardware.
 *      Depending on which hardware it reads, the cycle counter may wrap
 *      around quickly. Locking rules (if necessary) have to be defined
 *      by the implementor and user of specific instances of this API.
 *
 * @read:               returns the current cycle value
 * @mask:               bitmask for two's complement
 *                      subtraction of non 64 bit counters,
 *                      see CLOCKSOURCE_MASK() helper macro
 * @mult:               cycle to nanosecond multiplier
 * @shift:              cycle to nanosecond divisor (power of two)
 */
struct cyclecounter {
        cycle_t (*read)(const struct cyclecounter *cc);
        cycle_t mask;
        u32 mult;
        u32 shift;
};

/**
 * struct timecounter - layer above a %struct cyclecounter which counts nanoseconds
 *      Contains the state needed by timecounter_read() to detect
 *      cycle counter wrap around. Initialize with
 *      timecounter_init(). Also used to convert cycle counts into the
 *      corresponding nanosecond counts with timecounter_cyc2time(). Users
 *      of this code are responsible for initializing the underlying
 *      cycle counter hardware, locking issues and reading the time
 *      more often than the cycle counter wraps around. The nanosecond
 *      counter will only wrap around after ~585 years.
 *
 * @cc:                 the cycle counter used by this instance
 * @cycle_last:         most recent cycle counter value seen by
 *                      timecounter_read()
 * @nsec:               continuously increasing count
 */
struct timecounter {
        const struct cyclecounter *cc;
        cycle_t cycle_last;
        u64 nsec;
};

/**
 * cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
 * @cc:         Pointer to cycle counter.
 * @cycles:     Cycles
 *
 * XXX - This could use some mult_lxl_ll() asm optimization. Same code
 * as in cyc2ns, but with unsigned result.
 */
static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
                                      cycle_t cycles)
{
        u64 ret = (u64)cycles;
        ret = (ret * cc->mult) >> cc->shift;
        return ret;
}

/**
 * timecounter_init - initialize a time counter
 * @tc:                 Pointer to time counter which is to be initialized/reset
 * @cc:                 A cycle counter, ready to be used.
 * @start_tstamp:       Arbitrary initial time stamp.
 *
 * After this call the current cycle register (roughly) corresponds to
 * the initial time stamp. Every call to timecounter_read() increments
 * the time stamp counter by the number of elapsed nanoseconds.
 */
extern void timecounter_init(struct timecounter *tc,
                             const struct cyclecounter *cc,
                             u64 start_tstamp);

/**
 * timecounter_read - return nanoseconds elapsed since timecounter_init()
 *                    plus the initial time stamp
 * @tc:          Pointer to time counter.
 *
 * In other words, keeps track of time since the same epoch as
 * the function which generated the initial time stamp.
 */
extern u64 timecounter_read(struct timecounter *tc);

/**
 * timecounter_cyc2time - convert a cycle counter to same
 *                        time base as values returned by
 *                        timecounter_read()
 * @tc:         Pointer to time counter.
 * @cycle_tstamp:       a value returned by tc->cc->read()
 *
 * Cycle counts that are converted correctly as long as they
 * fall into the interval [-1/2 max cycle count, +1/2 max cycle count],
 * with "max cycle count" == cs->mask+1.
 *
 * This allows conversion of cycle counter values which were generated
 * in the past.
 */
extern u64 timecounter_cyc2time(struct timecounter *tc,
                                cycle_t cycle_tstamp);

/**
 * struct clocksource - hardware abstraction for a free running counter
 *      Provides mostly state-free accessors to the underlying hardware.
 *      This is the structure used for system time.
 *
 * @name:               ptr to clocksource name
 * @list:               list head for registration
 * @rating:             rating value for selection (higher is better)
 *                      To avoid rating inflation the following
 *                      list should give you a guide as to how
 *                      to assign your clocksource a rating
 *                      1-99: Unfit for real use
 *                              Only available for bootup and testing purposes.
 *                      100-199: Base level usability.
 *                              Functional for real use, but not desired.
 *                      200-299: Good.
 *                              A correct and usable clocksource.
 *                      300-399: Desired.
 *                              A reasonably fast and accurate clocksource.
 *                      400-499: Perfect
 *                              The ideal clocksource. A must-use where
 *                              available.
 * @read:               returns a cycle value, passes clocksource as argument
 * @enable:             optional function to enable the clocksource
 * @disable:            optional function to disable the clocksource
 * @mask:               bitmask for two's complement
 *                      subtraction of non 64 bit counters
 * @mult:               cycle to nanosecond multiplier
 * @shift:              cycle to nanosecond divisor (power of two)
 * @max_idle_ns:        max idle time permitted by the clocksource (nsecs)
 * @maxadj:             maximum adjustment value to mult (~11%)
 * @flags:              flags describing special properties
 * @archdata:           arch-specific data
 * @suspend:            suspend function for the clocksource, if necessary
 * @resume:             resume function for the clocksource, if necessary
 * @owner:              module reference, must be set by clocksource in modules
 */
struct clocksource {
        /*
         * Hotpath data, fits in a single cache line when the
         * clocksource itself is cacheline aligned.
         */
        cycle_t (*read)(struct clocksource *cs);
        cycle_t mask;
        u32 mult;
        u32 shift;
        u64 max_idle_ns;
        u32 maxadj;
#ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
        struct arch_clocksource_data archdata;
#endif

        const char *name;
        struct list_head list;
        int rating;
        int (*enable)(struct clocksource *cs);
        void (*disable)(struct clocksource *cs);
        unsigned long flags;
        void (*suspend)(struct clocksource *cs);
        void (*resume)(struct clocksource *cs);

        /* private: */
#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
        /* Watchdog related data, used by the framework */
        struct list_head wd_list;
        cycle_t cs_last;
        cycle_t wd_last;
#endif
        struct module *owner;
} ____cacheline_aligned;

/*
 * Clock source flags bits::
 */
#define CLOCK_SOURCE_IS_CONTINUOUS              0x01
#define CLOCK_SOURCE_MUST_VERIFY                0x02

#define CLOCK_SOURCE_WATCHDOG                   0x10
#define CLOCK_SOURCE_VALID_FOR_HRES             0x20
#define CLOCK_SOURCE_UNSTABLE                   0x40
#define CLOCK_SOURCE_SUSPEND_NONSTOP            0x80
#define CLOCK_SOURCE_RESELECT                   0x100

/* simplify initialization of mask field */
#define CLOCKSOURCE_MASK(bits) (cycle_t)((bits) < 64 ? ((1ULL<<(bits))-1) : -1)

/**
 * clocksource_khz2mult - calculates mult from khz and shift
 * @khz:                Clocksource frequency in KHz
 * @shift_constant:     Clocksource shift factor
 *
 * Helper functions that converts a khz counter frequency to a timsource
 * multiplier, given the clocksource shift value
 */
static inline u32 clocksource_khz2mult(u32 khz, u32 shift_constant)
{
        /*  khz = cyc/(Million ns)
         *  mult/2^shift  = ns/cyc
         *  mult = ns/cyc * 2^shift
         *  mult = 1Million/khz * 2^shift
         *  mult = 1000000 * 2^shift / khz
         *  mult = (1000000<<shift) / khz
         */
        u64 tmp = ((u64)1000000) << shift_constant;

        tmp += khz/2; /* round for do_div */
        do_div(tmp, khz);

        return (u32)tmp;
}

/**
 * clocksource_hz2mult - calculates mult from hz and shift
 * @hz:                 Clocksource frequency in Hz
 * @shift_constant:     Clocksource shift factor
 *
 * Helper functions that converts a hz counter
 * frequency to a timsource multiplier, given the
 * clocksource shift value
 */
static inline u32 clocksource_hz2mult(u32 hz, u32 shift_constant)
{
        /*  hz = cyc/(Billion ns)
         *  mult/2^shift  = ns/cyc
         *  mult = ns/cyc * 2^shift
         *  mult = 1Billion/hz * 2^shift
         *  mult = 1000000000 * 2^shift / hz
         *  mult = (1000000000<<shift) / hz
         */
        u64 tmp = ((u64)1000000000) << shift_constant;

        tmp += hz/2; /* round for do_div */
        do_div(tmp, hz);

        return (u32)tmp;
}

/**
 * clocksource_cyc2ns - converts clocksource cycles to nanoseconds
 * @cycles:     cycles
 * @mult:       cycle to nanosecond multiplier
 * @shift:      cycle to nanosecond divisor (power of two)
 *
 * Converts cycles to nanoseconds, using the given mult and shift.
 *
 * XXX - This could use some mult_lxl_ll() asm optimization
 */
static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
{
        return ((u64) cycles * mult) >> shift;
}


extern int clocksource_register(struct clocksource*);
extern int clocksource_unregister(struct clocksource*);
extern void clocksource_touch_watchdog(void);
extern struct clocksource* clocksource_get_next(void);
extern void clocksource_change_rating(struct clocksource *cs, int rating);
extern void clocksource_suspend(void);
extern void clocksource_resume(void);
extern struct clocksource * __init clocksource_default_clock(void);
extern void clocksource_mark_unstable(struct clocksource *cs);

extern u64
clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask);
extern void
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);

/*
 * Don't call __clocksource_register_scale directly, use
 * clocksource_register_hz/khz
 */
extern int
__clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq);
extern void
__clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq);

static inline int clocksource_register_hz(struct clocksource *cs, u32 hz)
{
        return __clocksource_register_scale(cs, 1, hz);
}

static inline int clocksource_register_khz(struct clocksource *cs, u32 khz)
{
        return __clocksource_register_scale(cs, 1000, khz);
}

static inline void __clocksource_updatefreq_hz(struct clocksource *cs, u32 hz)
{
        __clocksource_updatefreq_scale(cs, 1, hz);
}

static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
{
        __clocksource_updatefreq_scale(cs, 1000, khz);
}


extern int timekeeping_notify(struct clocksource *clock);

extern cycle_t clocksource_mmio_readl_up(struct clocksource *);
extern cycle_t clocksource_mmio_readl_down(struct clocksource *);
extern cycle_t clocksource_mmio_readw_up(struct clocksource *);
extern cycle_t clocksource_mmio_readw_down(struct clocksource *);

extern int clocksource_mmio_init(void __iomem *, const char *,
        unsigned long, int, unsigned, cycle_t (*)(struct clocksource *));

extern int clocksource_i8253_init(void);

#define CLOCKSOURCE_OF_DECLARE(name, compat, fn) \
        OF_DECLARE_1(clksrc, name, compat, fn)

#ifdef CONFIG_CLKSRC_OF
extern void clocksource_of_init(void);
#else
static inline void clocksource_of_init(void) {}
#endif

#endif /* _LINUX_CLOCKSOURCE_H */

/* [<][>][^][v][top][bottom][index][help] */