root/include/linux/dma-mapping.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. valid_dma_direction
  2. is_device_dma_capable
  3. dma_get_mask
  4. dma_set_coherent_mask
  5. dma_set_mask_and_coherent
  6. dma_coerce_mask_and_coherent
  7. set_arch_dma_coherent_ops
  8. dma_get_max_seg_size
  9. dma_set_max_seg_size
  10. dma_get_seg_boundary
  11. dma_set_seg_boundary
  12. dma_max_pfn
  13. dma_zalloc_coherent
  14. dma_get_cache_alignment
  15. dma_declare_coherent_memory
  16. dma_release_declared_memory
  17. dma_mark_declared_memory_occupied
  18. dmam_declare_coherent_memory
  19. dmam_release_declared_memory
  20. dma_alloc_writecombine
  21. dma_free_writecombine
  22. dma_mmap_writecombine

#ifndef _LINUX_DMA_MAPPING_H
#define _LINUX_DMA_MAPPING_H

#include <linux/string.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/dma-attrs.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>

/*
 * A dma_addr_t can hold any valid DMA or bus address for the platform.
 * It can be given to a device to use as a DMA source or target.  A CPU cannot
 * reference a dma_addr_t directly because there may be translation between
 * its physical address space and the bus address space.
 */
struct dma_map_ops {
        void* (*alloc)(struct device *dev, size_t size,
                                dma_addr_t *dma_handle, gfp_t gfp,
                                struct dma_attrs *attrs);
        void (*free)(struct device *dev, size_t size,
                              void *vaddr, dma_addr_t dma_handle,
                              struct dma_attrs *attrs);
        int (*mmap)(struct device *, struct vm_area_struct *,
                          void *, dma_addr_t, size_t, struct dma_attrs *attrs);

        int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
                           dma_addr_t, size_t, struct dma_attrs *attrs);

        dma_addr_t (*map_page)(struct device *dev, struct page *page,
                               unsigned long offset, size_t size,
                               enum dma_data_direction dir,
                               struct dma_attrs *attrs);
        void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
                           size_t size, enum dma_data_direction dir,
                           struct dma_attrs *attrs);
        int (*map_sg)(struct device *dev, struct scatterlist *sg,
                      int nents, enum dma_data_direction dir,
                      struct dma_attrs *attrs);
        void (*unmap_sg)(struct device *dev,
                         struct scatterlist *sg, int nents,
                         enum dma_data_direction dir,
                         struct dma_attrs *attrs);
        void (*sync_single_for_cpu)(struct device *dev,
                                    dma_addr_t dma_handle, size_t size,
                                    enum dma_data_direction dir);
        void (*sync_single_for_device)(struct device *dev,
                                       dma_addr_t dma_handle, size_t size,
                                       enum dma_data_direction dir);
        void (*sync_sg_for_cpu)(struct device *dev,
                                struct scatterlist *sg, int nents,
                                enum dma_data_direction dir);
        void (*sync_sg_for_device)(struct device *dev,
                                   struct scatterlist *sg, int nents,
                                   enum dma_data_direction dir);
        int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
        int (*dma_supported)(struct device *dev, u64 mask);
        int (*set_dma_mask)(struct device *dev, u64 mask);
#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
        u64 (*get_required_mask)(struct device *dev);
#endif
        int is_phys;
};

#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))

#define DMA_MASK_NONE   0x0ULL

static inline int valid_dma_direction(int dma_direction)
{
        return ((dma_direction == DMA_BIDIRECTIONAL) ||
                (dma_direction == DMA_TO_DEVICE) ||
                (dma_direction == DMA_FROM_DEVICE));
}

static inline int is_device_dma_capable(struct device *dev)
{
        return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
}

#ifdef CONFIG_HAS_DMA
#include <asm/dma-mapping.h>
#else
#include <asm-generic/dma-mapping-broken.h>
#endif

static inline u64 dma_get_mask(struct device *dev)
{
        if (dev && dev->dma_mask && *dev->dma_mask)
                return *dev->dma_mask;
        return DMA_BIT_MASK(32);
}

#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask);
#else
static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
{
        if (!dma_supported(dev, mask))
                return -EIO;
        dev->coherent_dma_mask = mask;
        return 0;
}
#endif

/*
 * Set both the DMA mask and the coherent DMA mask to the same thing.
 * Note that we don't check the return value from dma_set_coherent_mask()
 * as the DMA API guarantees that the coherent DMA mask can be set to
 * the same or smaller than the streaming DMA mask.
 */
static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
{
        int rc = dma_set_mask(dev, mask);
        if (rc == 0)
                dma_set_coherent_mask(dev, mask);
        return rc;
}

/*
 * Similar to the above, except it deals with the case where the device
 * does not have dev->dma_mask appropriately setup.
 */
static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
{
        dev->dma_mask = &dev->coherent_dma_mask;
        return dma_set_mask_and_coherent(dev, mask);
}

extern u64 dma_get_required_mask(struct device *dev);

#ifndef set_arch_dma_coherent_ops
static inline int set_arch_dma_coherent_ops(struct device *dev)
{
        return 0;
}
#endif

static inline unsigned int dma_get_max_seg_size(struct device *dev)
{
        return dev->dma_parms ? dev->dma_parms->max_segment_size : 65536;
}

static inline unsigned int dma_set_max_seg_size(struct device *dev,
                                                unsigned int size)
{
        if (dev->dma_parms) {
                dev->dma_parms->max_segment_size = size;
                return 0;
        } else
                return -EIO;
}

static inline unsigned long dma_get_seg_boundary(struct device *dev)
{
        return dev->dma_parms ?
                dev->dma_parms->segment_boundary_mask : 0xffffffff;
}

static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
{
        if (dev->dma_parms) {
                dev->dma_parms->segment_boundary_mask = mask;
                return 0;
        } else
                return -EIO;
}

#ifndef dma_max_pfn
static inline unsigned long dma_max_pfn(struct device *dev)
{
        return *dev->dma_mask >> PAGE_SHIFT;
}
#endif

static inline void *dma_zalloc_coherent(struct device *dev, size_t size,
                                        dma_addr_t *dma_handle, gfp_t flag)
{
        void *ret = dma_alloc_coherent(dev, size, dma_handle,
                                       flag | __GFP_ZERO);
        return ret;
}

#ifdef CONFIG_HAS_DMA
static inline int dma_get_cache_alignment(void)
{
#ifdef ARCH_DMA_MINALIGN
        return ARCH_DMA_MINALIGN;
#endif
        return 1;
}
#endif

/* flags for the coherent memory api */
#define DMA_MEMORY_MAP                  0x01
#define DMA_MEMORY_IO                   0x02
#define DMA_MEMORY_INCLUDES_CHILDREN    0x04
#define DMA_MEMORY_EXCLUSIVE            0x08

#ifndef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
static inline int
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
                            dma_addr_t device_addr, size_t size, int flags)
{
        return 0;
}

static inline void
dma_release_declared_memory(struct device *dev)
{
}

static inline void *
dma_mark_declared_memory_occupied(struct device *dev,
                                  dma_addr_t device_addr, size_t size)
{
        return ERR_PTR(-EBUSY);
}
#endif

/*
 * Managed DMA API
 */
extern void *dmam_alloc_coherent(struct device *dev, size_t size,
                                 dma_addr_t *dma_handle, gfp_t gfp);
extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
                               dma_addr_t dma_handle);
extern void *dmam_alloc_noncoherent(struct device *dev, size_t size,
                                    dma_addr_t *dma_handle, gfp_t gfp);
extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
                                  dma_addr_t dma_handle);
#ifdef ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY
extern int dmam_declare_coherent_memory(struct device *dev,
                                        phys_addr_t phys_addr,
                                        dma_addr_t device_addr, size_t size,
                                        int flags);
extern void dmam_release_declared_memory(struct device *dev);
#else /* ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY */
static inline int dmam_declare_coherent_memory(struct device *dev,
                                phys_addr_t phys_addr, dma_addr_t device_addr,
                                size_t size, gfp_t gfp)
{
        return 0;
}

static inline void dmam_release_declared_memory(struct device *dev)
{
}
#endif /* ARCH_HAS_DMA_DECLARE_COHERENT_MEMORY */

#ifndef CONFIG_HAVE_DMA_ATTRS
struct dma_attrs;

#define dma_map_single_attrs(dev, cpu_addr, size, dir, attrs) \
        dma_map_single(dev, cpu_addr, size, dir)

#define dma_unmap_single_attrs(dev, dma_addr, size, dir, attrs) \
        dma_unmap_single(dev, dma_addr, size, dir)

#define dma_map_sg_attrs(dev, sgl, nents, dir, attrs) \
        dma_map_sg(dev, sgl, nents, dir)

#define dma_unmap_sg_attrs(dev, sgl, nents, dir, attrs) \
        dma_unmap_sg(dev, sgl, nents, dir)

#else
static inline void *dma_alloc_writecombine(struct device *dev, size_t size,
                                           dma_addr_t *dma_addr, gfp_t gfp)
{
        DEFINE_DMA_ATTRS(attrs);
        dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
        return dma_alloc_attrs(dev, size, dma_addr, gfp, &attrs);
}

static inline void dma_free_writecombine(struct device *dev, size_t size,
                                         void *cpu_addr, dma_addr_t dma_addr)
{
        DEFINE_DMA_ATTRS(attrs);
        dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
        return dma_free_attrs(dev, size, cpu_addr, dma_addr, &attrs);
}

static inline int dma_mmap_writecombine(struct device *dev,
                                        struct vm_area_struct *vma,
                                        void *cpu_addr, dma_addr_t dma_addr,
                                        size_t size)
{
        DEFINE_DMA_ATTRS(attrs);
        dma_set_attr(DMA_ATTR_WRITE_COMBINE, &attrs);
        return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, &attrs);
}
#endif /* CONFIG_HAVE_DMA_ATTRS */

#ifdef CONFIG_NEED_DMA_MAP_STATE
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
#define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
#define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
#else
#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
#define dma_unmap_addr(PTR, ADDR_NAME)           (0)
#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
#define dma_unmap_len(PTR, LEN_NAME)             (0)
#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
#endif

#endif

/* [<][>][^][v][top][bottom][index][help] */